1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of PEG Anchor and Serum on Lipid Nanoparticles: Development of a Nanoparticles Tracking Method

      , , , , , ,
      Pharmaceutics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyethylene glycol (PEG) is used in Lipid Nanoparticles (LNPs) formulations to confer stealth properties and is traditionally anchored in membranes by a lipid moiety whose length significantly impacts the LNPs fate in vivo. C18 acyl chains are efficiently anchored in the membrane, while shorter C14 lipids are quickly desorbed and replaced by a protein corona responsible for the completely different fate of LNPs. In this context, a method to predict the biological behavior of LNPs depending on the lipid-PEG dissociation was developed using the Nanoparticle Tracking Analysis (NTA) method in serum. Two formulations of siRNA-containing LNPs were prepared including CSL3 or SM-102 lipids and were grafted with different lipids-PEG (C18, C14 lipids-PEG, and Ceramide-PEG). The impact of the lipid-PEG on the interactions between LNPs and serum components was demonstrated by monitoring the mean particle size and the concentration over time. In vitro, these formulations demonstrated low toxicity and efficient gene knockdown on tumor MDA-MB-231 cells, but serum was found to significantly impact the efficiency of C18-PEG-based LNPs, while it did not impact the efficiency of C14-PEG-based LNPs. The NTA method demonstrated the ability to discriminate between the behaviors of LNPs according to serum proteins’ interactions. CSL3 lipid and Cer-PEG were confirmed to have promise for LNP formulation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.

          Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid nanoparticles for mRNA delivery

            Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle–mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle–mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle–mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle–mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology. Lipid nanoparticle–mRNA formulations have entered the clinic as coronavirus disease 2019 (COVID-19) vaccines, marking an important milestone for mRNA therapeutics. This Review discusses lipid nanoparticle design for mRNA delivery, highlighting key points for clinical translation and preclinical studies of lipid nanoparticle–mRNA therapeutics for various diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates

              Purpose To evaluate the nanoparticle tracking analysis (NTA) technique, compare it with dynamic light scattering (DLS) and test its performance in characterizing drug delivery nanoparticles and protein aggregates. Methods Standard polystyrene beads of sizes ranging from 60 to 1,000 nm and physical mixtures thereof were analyzed with NTA and DLS. The influence of different ratios of particle populations was tested. Drug delivery nanoparticles and protein aggregates were analyzed by NTA and DLS. Live monitoring of heat-induced protein aggregation was performed with NTA. Results NTA was shown to accurately analyze the size distribution of monodisperse and polydisperse samples. Sample visualization and individual particle tracking are features that enable a thorough size distribution analysis. The presence of small amounts of large (1,000 nm) particles generally does not compromise the accuracy of NTA measurements, and a broad range of population ratios can easily be detected and accurately sized. NTA proved to be suitable to characterize drug delivery nanoparticles and protein aggregates, complementing DLS. Live monitoring of heat-induced protein aggregation provides information about aggregation kinetics and size of submicron aggregates. Conclusion NTA is a powerful characterization technique that complements DLS and is particularly valuable for analyzing polydisperse nanosized particles and protein aggregates.
                Bookmark

                Author and article information

                Contributors
                Journal
                PHARK5
                Pharmaceutics
                Pharmaceutics
                MDPI AG
                1999-4923
                February 2023
                February 10 2023
                : 15
                : 2
                : 597
                Article
                10.3390/pharmaceutics15020597
                36839919
                8cf8f14a-d430-4f2e-a683-05d7404a510f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article