14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Immune response after two doses of the BNT162b2 COVID-19 vaccine and risk of SARS-CoV-2 breakthrough infection in Tyrol, Austria: an open-label, observational phase 4 trial

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Correlates of protection could help to assess the extent to which a person is protected from SARS-CoV-2 infection after vaccination (so-called breakthrough infection). We aimed to clarify associations of antibody and T-cell responses after vaccination against COVID-19 with risk of a SARS-CoV-2 breakthrough infection and whether measurement of these responses enhances risk prediction.

          Methods

          We did an open-label, phase 4 trial in two community centres in the Schwaz district of the Federal State of Tyrol, Austria, before the emergence of the omicron (B.1.1.529) variant of SARS-CoV-2. We included individuals (aged ≥16 years) a mean of 35 days (range 27–43) after they had received a second dose of the BNT162b2 (Pfizer–BioNTech) COVID-19 vaccine. We quantified associations between immunological parameters and breakthrough infection and assessed whether information on these parameters improves risk discrimination. The study is registered with the European Union Drug Regulating Authorities Clinical Trials Database, 2021-002030-16.

          Findings

          2760 individuals (1682 [60·9%] female, 1078 [39·1%] male, mean age 47·4 years [SD 14·5]) were enrolled into this study between May 15 and May 21, 2021, 712 (25·8%) of whom had a previous SARS-CoV-2 infection. Over a median follow-up of 5·9 months, 68 (2·5%) participants had a breakthrough infection. In models adjusted for age, sex, and previous infection, hazard ratios for breakthrough infection for having twice the immunological parameter level at baseline were 0·72 (95% CI 0·60–0·86) for anti-spike IgG, 0·80 (0·70–0·92) for neutralising antibodies in a surrogate virus neutralisation assay, 0·84 (0·58–1·21) for T-cell response after stimulation with a CD4 peptide pool, and 0·77 (0·54–1·08) for T-cell response after stimulation with a combined CD4 and CD8 peptide pool. For neutralising antibodies measured in a nested case-control sample using a pseudotyped virus neutralisation assay, the corresponding odds ratio was 0·78 (0·62–1·00). Among participants with previous infection, the corresponding hazard ratio was 0·73 (0·61–0·88) for anti-nucleocapsid Ig. Addition of anti-spike IgG information to a model containing information on age and sex improved the C-index by 0·085 (0·027–0·143).

          Interpretation

          In contrast to T-cell response, higher levels of binding and neutralising antibodies were associated with a reduced risk of breakthrough SARS-CoV-2 infection. The assessment of anti-spike IgG enhances the prediction of incident breakthrough SARS-CoV-2 infection and could therefore be a suitable correlate of protection in practice. Our phase 4 trial measured both humoral and cellular immunity and had a 6-month follow-up period; however, the longer-term protection against emerging variants of SARS-CoV-2 remains unclear.

          Funding

          None.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T-cell responses

          An effective vaccine is needed to halt the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase I/II coronavirus disease 2019 (COVID-19) vaccine trial with BNT162b1, a lipid nanoparticle-formulated nucleoside-modified mRNA that encodes the receptor binding domain (RBD) of the SARS-CoV-2 spike protein1. Here we present antibody and T cell responses after vaccination with BNT162b1 from a second, non-randomized open-label phase I/II trial in healthy adults, 18-55 years of age. Two doses of 1-50 μg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those seen in serum from a cohort of individuals who had recovered from COVID-19. Geometric mean titres of SARS-CoV-2 serum-neutralizing antibodies on day 43 were 0.7-fold (1-μg dose) to 3.5-fold (50-μg dose) those of the recovered individuals. Immune sera broadly neutralized pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had T helper type 1 (TH1)-skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon-γ was produced by a large fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest that it has the potential to protect against COVID-19 through multiple beneficial mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months

            Background Despite high vaccine coverage and effectiveness, the incidence of symptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been increasing in Israel. Whether the increasing incidence of infection is due to waning immunity after the receipt of two doses of the BNT162b2 vaccine is unclear. Methods We conducted a 6-month longitudinal prospective study involving vaccinated health care workers who were tested monthly for the presence of anti-spike IgG and neutralizing antibodies. Linear mixed models were used to assess the dynamics of antibody levels and to determine predictors of antibody levels at 6 months. Results The study included 4868 participants, with 3808 being included in the linear mixed-model analyses. The level of IgG antibodies decreased at a consistent rate, whereas the neutralizing antibody level decreased rapidly for the first 3 months with a relatively slow decrease thereafter. Although IgG antibody levels were highly correlated with neutralizing antibody titers (Spearman’s rank correlation between 0.68 and 0.75), the regression relationship between the IgG and neutralizing antibody levels depended on the time since receipt of the second vaccine dose. Six months after receipt of the second dose, neutralizing antibody titers were substantially lower among men than among women (ratio of means, 0.64; 95% confidence interval [CI], 0.55 to 0.75), lower among persons 65 years of age or older than among those 18 to less than 45 years of age (ratio of means, 0.58; 95% CI, 0.48 to 0.70), and lower among participants with immunosuppression than among those without immunosuppression (ratio of means, 0.30; 95% CI, 0.20 to 0.46). Conclusions Six months after receipt of the second dose of the BNT162b2 vaccine, humoral response was substantially decreased, especially among men, among persons 65 years of age or older, and among persons with immunosuppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies

              The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening 1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping that is highly concordant with knowledge-based structural classifications 3–5 . Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309) 6 and group F (for example, CR3022) 7 , which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.
                Bookmark

                Author and article information

                Journal
                Lancet Microbe
                Lancet Microbe
                The Lancet. Microbe
                The Author(s). Published by Elsevier Ltd.
                2666-5247
                21 June 2023
                21 June 2023
                Affiliations
                [a ]Institute of Health Economics, Medical University of Innsbruck, Innsbruck, Austria
                [b ]Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
                [c ]Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
                [d ]Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
                [e ]Department of Surgery, University Hospital of Trauma Surgery, Medical University of Innsbruck, Innsbruck, Austria
                [f ]Institute of Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
                [g ]Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
                [h ]Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
                [i ]Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
                [j ]Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
                [k ]Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
                Author notes
                [* ]Correspondence to: Prof Peter Willeit, Institute of Health Economics, Medical University of Innsbruck, 6020 Innsbruck, Austria
                [** ]Dr Wegene Borena, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
                [*]

                Contributed equally

                [†]

                Members are listed in the appendix (p 12)

                [†]

                Contributed equally

                Article
                S2666-5247(23)00107-6
                10.1016/S2666-5247(23)00107-6
                10284585
                89ab4c1a-53fd-4ac4-80be-0426be2cea56
                © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article