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Omicron escapes the majority of existing 
SARS-CoV-2 neutralizing antibodies

Yunlong Cao1,2,11 ✉, Jing Wang1,3,11, Fanchong Jian1,4,11, Tianhe Xiao1,5,11, Weiliang Song1,3,11, 
Ayijiang Yisimayi1,3,11, Weijin Huang6,11, Qianqian Li6, Peng Wang1, Ran An1, Jing Wang1, 
Yao Wang1, Xiao Niu1,4, Sijie Yang1,7, Hui Liang1, Haiyan Sun1, Tao Li6, Yuanling Yu6, 
Qianqian Cui6, Shuo Liu6, Xiaodong Yang8, Shuo Du3, Zhiying Zhang3, Xiaohua Hao9, 
Fei Shao1, Ronghua Jin9, Xiangxi Wang10 ✉, Junyu Xiao2,3 ✉, Youchun Wang6 ✉ & 
Xiaoliang Sunney Xie1,2 ✉

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the 
receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing 
antibodies requires immediate investigation. Here we use high-throughput yeast 
display screening1,2 to determine the profiles of RBD escaping mutations for 247 
human anti-RBD neutralizing antibodies and show that the neutralizing antibodies 
can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping 
that is highly concordant with knowledge-based structural classifications3–5. Various 
single mutations of Omicron can impair neutralizing antibodies of different epitope 
groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which 
overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and 
Q493R. Antibodies in group E (for example, S309)6 and group F (for example, 
CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less 
affected by Omicron, but a subset of neutralizing antibodies are still escaped by 
G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization  
showed that neutralizing antibodies that sustained single mutations could also be 
escaped, owing to multiple synergetic mutations on their epitopes. In total,  
over 85% of the tested neutralizing antibodies were escaped by Omicron.  
With regard to neutralizing-antibody-based drugs, the neutralization potency of 
LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was 
greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a 
reduced efficacy. Together, our data suggest that infection with Omicron would result 
in considerable humoral immune evasion, and that neutralizing antibodies targeting 
the sarbecovirus conserved region will remain most effective. Our results inform the 
development of antibody-based drugs and vaccines against Omicron and future 
variants.

The SARS-CoV-2 variant B.1.1.529 was first reported to the World Health 
Organization (WHO) on 24 November 2021. It spread rapidly, and the 
WHO classified it as a variant of concern only two days after, designat-
ing it as Omicron8,9. An unusually large number of mutations are found 
in Omicron, including more than 30 in the spike protein (Extended 
Data Fig. 1a). The RBD, which is responsible for interacting with the 
angiotensin-converting enzyme 2 (ACE2) receptor, contains 15 of these 
mutations: G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, 

T478K, E484A, Q493R, G496S, Q498R, N501Y and Y505H. Some of these 
mutations are very concerning because of their well-understood func-
tional consequences. For example, K417N and N501Y contribute to 
immune escape and higher infectivity10–13.The functional effects of 
many other mutations still require investigation.

The spike protein is the target of essentially all neutralizing antibod-
ies that are found in the sera of convalescent individuals or that are 
elicited by vaccines. Most of the N-terminal domain (NTD)-directed 
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neutralizing antibodies target an antigenic ‘supersite’ in the NTD, which 
involves the N3 (residues 141–156) and N5 (residues 246–260) loops14,15; 
these antibodies are thus very susceptible to NTD mutations. Omicron 
carries the Δ143–145 mutation, which would alter the N3 loop and is 
likely to result in the immune escape of most anti-NTD neutralizing 
antibodies (Extended Data Fig. 1b). Compared to NTD-targeting neutral-
izing antibodies, RBD-targeting neutralizing antibodies are particularly 
abundant and potent, and display diverse epitopes. An evaluation of 
how Omicron affects the neutralization capability of anti-RBD neutral-
izing antibodies of diverse classes and epitopes is urgently needed.

RBD-directed SARS-CoV-2 neutralizing antibodies can be assigned 
into different classes or binding sites on the basis of structural analyses 
by cryo-electron microscopy or high-resolution crystallography3–5. 
However, analysis based on structural data only indicates the contacting 
amino acids, and does not enable the escaping mutations for a specific 
antibody to be identified. Advances in deep antigen mutation screening 
using a fluorescence-activated cell sorting (FACS)-based yeast display 
platform has allowed the quick mapping of all single-amino-acid muta-
tions in the RBD that affect the binding of SARS-CoV-2 RBD neutralizing 
antibodies1,16. The method has proven highly effective in predicting the 
efficacy of neutralizing-antibody-based drugs towards mutations2. 
However, to study how human humoral immunity may react to highly 

mutated variants such as Omicron requires mutation profiling of a 
large collection of neutralizing antibodies that target different regions 
of the RBD, and mutation screening with the FACS-based yeast display 
method is limited by low experimental throughput. Here we developed 
a magnetic-activated cell sorting (MACS)-based screening method 
that increases the throughput by nearly 100-fold while obtaining a 
comparable data quality to FACS (Fig 1a, Extended Data Fig. 2). Using 
this method, we rapidly characterized the profile of RBD escaping muta-
tions for a total of 247 neutralizing antibodies (Supplementary Data 1). 
Half of the neutralizing antibodies were part of the antibodies identified 
by us using single-cell V(D)J sequencing of antigen-specific memory B 
cells from individuals who had been infected with SARS-CoV-2 (hereaf-
ter, SARS-CoV-2 convalescent individuals); individuals who had been 
vaccinated against SARS-CoV-2; and individuals with a previous infec-
tion of SARS-CoV-1 (SARS-CoV-1 convalescent individuals) who had 
recently been vaccinated against SARS-CoV-2 (Supplementary Data 2). 
The other half of the neutralizing antibodies were identified by groups 
worldwide3,5,6,11,17–40 (Supplementary Table 1).

The high-throughput screening capability allowed us to classify 
these neutralizing antibodies into six epitope groups (A–F) using unsu-
pervised clustering without dependence on structural studies, and 
the grouping is highly concordant with knowledge-based structural 
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classifications3–5 (Fig. 1b, c). In particular, group A–D neutralizing 
antibodies largely correspond to the RBS A–D neutralizing antibod-
ies described by Yuan et al.4, and overlap with the class 1–2 neutraliz-
ing antibodies described by Barnes et al.3 in general. The epitopes of 
these neutralizing antibodies largely overlap with RBD residues that 
are involved in binding to ACE2. Group A and B neutralizing antibod-
ies, represented by LY-CoV016 and AZD8895, respectively, can usually 
only bind to the RBDs in the ‘up’ conformation, whereas most of the 
group C and D antibodies—such as LY-CoV555 and REGN-10987—bind 
to RBDs regardless of their ‘up’ and ‘down’ conformations. Group E 
and F neutralizing antibodies are very similar to the class 3 and 4 anti-
bodies described by Barnes et al.3, and target the S309 (VIR-7831) site 

and CR3022 site, which could exhibit pan-sarbecovirus neutraliza-
tion capacity (Fig 1e). Most of these neutralizing antibodies neutralize 
SARS-CoV-2 using mechanisms other than directly interfering with 
ACE2 binding.

Inferred from the escaping mutation profiles, various single 
mutations of Omicron could impair neutralizing antibodies of dif-
ferent epitope groups (Extended Data Fig. 3). Specifically, neutral-
izing antibodies in groups A–D, the epitopes of which overlap with 
the ACE2-binding motif, are largely escaped by the single mutations 
K417N, G446S, E484A, and Q493R. In addition, a subset of neutralizing 
antibodies of groups E and F are escaped by single mutations of G339D, 
N440K, S371L and S375F. However, owing to the extensive mutations 
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Fig. 2 | The neutralizing abilities of group A–C antibodies are mostly 
abolished by Omicron. a–c, Escaping mutation profiles of representative 
neutralizing antibodies for group A (a), B (b) and C (c). For each site, the height 
of a letter indicates the detected mutation escape score of its corresponding 
residue. Sites mutated in Omicron are highlighted. d–f, Heat maps of site 
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blue. Antibody escaping mutations (Omicron) inferred from yeast display are 
labelled with squares.
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accumulated on the RBD of Omicron, studying the response of neutral-
izing antibodies to Omicron only in the context of single mutations is 
insufficient. Indeed, Omicron pseudovirus neutralization and spike 
protein enzyme-linked immunosorbent assay (ELISA) showed that 
neutralizing antibodies that tolerate single mutations could also be 
escaped by Omicron owing to multiple synergetic mutations on their 
epitopes (Fig 1d, Extended Data Fig. 3). In total, over 85% of the tested 
human neutralizing antibodies are escaped, suggesting that Omicron 
could cause substantial humoral immune evasion and potential anti-
genic shifting.

It is crucial to analyse how each group of neutralizing antibodies 
reacts to Omicron to inform the development of drugs and vaccines 

that are based on these antibodies. Group A neutralizing antibod-
ies mainly comprise antibodies that are encoded by the VH3-53 and 
VH3-66 (also known as IGHV3-53 and IGHV3-66) germline genes; these 
are present at high levels in our present collection of SARS-CoV-2 
neutralizing antibodies17,21,22,26,41–43, including several antibodies that 
have obtained emergency use authorization (CB6/LY-CoV016)19 or 
that are currently being studied in clinical trials (P2C-1F11/BRII-196 
and BD-604/DXP-604)18,44 (Fig. 2a, Extended Data Fig. 4a). Group A 
neutralizing antibodies often exhibit fewer somatic mutations and 
have a shorter complementarity-determining region 3 (CDR3) length 
compared to other groups (Extended Data Fig. 5a, b). The epitopes of 
these antibodies extensively overlap with the binding site of ACE2 and 
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Fig. 3 | Most group D and E neutralizing antibodies are escaped by Omicron. 
a–c, Escaping mutation profiles of representative neutralizing antibodies for 
groups D (a), E (b) and F (c). For each site, the height of a letter indicates the 
detected mutation escape score of its corresponding residue. Sites mutated in 
Omicron are highlighted. d–f, Heat maps of site escape scores for neutralizing 
antibodies of epitope groups D (d), E (e) and F (f). ACE2 interface residues are 
annotated with red blocks, and mutated sites in Omicron are marked in red. 

Annotations on the right side of heat maps represent the pseudovirus 
neutralizing IC50 fold change (FC) for Omicron and Beta compared to D614G.  
g–j, Representative structures of group D (g), E (h) and F (i, j) antibodies in 
complex with the RBD. Residues that are involved in important contacts are 
labelled. Omicron mutations are marked in blue. Antibody escaping mutations 
(Omicron) inferred from yeast display are labelled with squares.
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are frequently evaded by RBD mutations at the K417, D420, F456, A475 
and L455 sites (Fig 2d, Extended Data Figs. 6a, 7a). Most neutralizing 
antibodies in group A were already escaped by the B.1.351 (Beta) variant 
(Extended Data Fig. 5d); specifically, by the K417N mutation (Extended 
Data Fig. 8a), owing to a critical salt-bridge interaction between Lys417 
and a negatively charged residue in the antibody (Fig. 2g). Neutralizing 
antibodies that survived the Beta strain, such as BRII-196 and DXP-604, 
are insensitive to the K417N single-site change but could also be heavily 
affected by the combination of K417N and other RBD mutations located 
on their epitopes, such as S477N, Q493R, G496S, Q498R, N501Y and 
Y505H of Omicron, thus causing a loss or reduction of neutralization 
(Fig 2d, Extended Data Fig. 7a).

The neutralizing antibodies encoded by VH1-58 (IGHV1-58) are 
enriched in group B (Extended Data Fig. 4b). These antibodies—for 
example, AZD8895 (ref. 36), REGN-10933 (ref. 42) and BD-836 (ref. 45)—
bind to the left shoulder of the RBD, often focusing on the far tip 
(Fig. 2h). These neutralizing antibodies are very sensitive to the 
changes at the F486, N487 and G476 sites (Fig 2b, Extended Data Fig. 6b).  
However, F486 and a few other major targeting sites of these neutral-
izing antibodies are critically involved in ACE2 binding, and therefore 
they are generally more difficult to escape. A subset of neutralizing 
antibodies in group B, such as AZD8895 and BD-836, could survive the 
Beta variant (Fig 2e); however, Omicron significantly reduced the bind-
ing affinity of group B neutralizing antibodies to the RBD, potentially 
as a result of S477N/T478K/E484A on their epitope46 (Extended Data 
Fig. 7b), resulting in the loss of neutralization.

Group C neutralizing antibodies are frequently encoded by VH1-2 and 
VH1-69 (IGHV1-2 and IGHV1-69) (Extended Data Fig. 4c). Most antibodies 
in this group could bind to both ‘up’ and ‘down’ RBDs, resulting in higher 
neutralization potency compared to other groups (Fig. 2c, Extended 
Data Fig. 5c). Several highly potent antibodies are found in group C, 
including BD-368-2/DXP-593 (ref. 44), C002 (ref. 3) and LY-CoV555 (ref. 47). 
They bind to the right shoulder of the RBD (Fig. 2i), and are mostly 
susceptible to changes at E484 (Extended Data Figs. 6c, 7c), such as the 
E484K mutation found in Beta (Fig. 2f). The E484A mutation that is seen 
in Omicron elicited a similar escaping effect, although the change to 
alanine is slightly subtler, and could be tolerated by certain antibodies 
in this group (Extended Data Fig. 8b). All group C neutralizing antibod-
ies tested are escaped by Omicron.

Group D neutralizing antibodies consist of diverse IGHV 
gene-encoded antibodies (Extended Data Fig. 4d). Prominent members 

in this group include REGN-10987 (ref. 42) and AZD1061 (ref. 36) (Fig. 3a). 
They further rotate down from the RBD right shoulder towards the 
S309 site when compared to group C antibodies (Fig. 3g). As a loop 
formed by residues 440–449 in the RBD is critical for the targeting of 
this group of antibodies, they are sensitive to changes at N440, K444, 
G446 and N448 (Extended Data Figs. 6d, 7d). Most neutralizing anti-
bodies in group D remain active against Beta; however, G446S would 
substantially affect their neutralization capability against Omicron 
(Fig. 3d). Also, for those antibodies that could tolerate a G446S single 
mutation, the N440K/G446S combination may considerably reduce 
their binding affinity, with the result that most group D antibodies are 
escaped by Omicron.

Group E and F neutralizing antibodies are rarer when compared 
to the other four groups. The archetypal member of each group was 
originally isolated from a SARS-CoV-1 convalescent individual, and 
exhibits SARS-CoV-2 cross-neutralizing activity. There is no clear V(D)
J convergent effect compared to groups A, B and C (Extended Data 
Fig. 4e, f), and the mutation rate and CDR3 length are larger than other 
groups. Neutralizing antibodies in groups E and F rarely compete with 
ACE2; thus, their average half-maximal inhibitory concentration (IC50) 
is higher than that of antibodies in groups A–D (Extended Data Fig. 5c). 
Neutralizing antibodies in group E—such as VIR-7831/S309—may rec-
ognize a mixed protein and carbohydrate epitope that involves the 
N-linked glycan on N343 (ref. 6) (Fig. 3h). Inferred from the escaping 
mutation profiles (Fig. 3b), group E antibodies are often sensitive to 
changes at G339, T345 and R346 (Extended Data Figs. 6e, 7e). The G339D 
mutation would affect the neutralization performance of a subset of 
neutralizing antibodies (Fig. 3e). Also, part of the epitope of group E 
antibodies would extend to the 440–449 loop, rendering them sensitive 
to the N440K mutation in Omicron (Fig. 3e). Notably, the frequency of 
Omicron with the R346K mutation is continuously increasing, which 
may severely affect the neutralization capacity of group E antibodies.

Group F neutralizing antibodies (for example, S304) target a cryptic 
site in the RBD that is generally not exposed (Fig. 3i), and therefore 
their neutralizing activities are generally weaker7. Group F antibodies 
are often sensitive to changes at F374, T376 and K378 (Extended Data 
Figs. 6f, 7f). A loop involving the RBD residues 371–375 lies in the ridge 
between the E and F sites; thus, a subset of group F antibodies—including 
some group E antibodies—could be affected by the S371L/S373P/S375F  
mutations if their epitopes extend to this region (Fig. 3c, f). Of note, 
some group F antibodies are highly sensitive to V503 and G504, similar 
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concentration, EC50) of selected potent Omicron-neutralizing antibodies. The 
monoclonal antibody HG1K (IgG1 antibody against influenza A virus subtype 
H7N9) was used as the negative control.
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to the epitopes of S2X259 (Fig. 3f, j), suggesting that they can compete 
with ACE2. Indeed, several neutralizing antibodies, such as BD55-5300 
and BD55-3372, exhibit higher neutralization potency than other anti-
bodies in group F (Figs. 3c, 4b). However, the neutralization capabil-
ity of these antibodies might be undermined by N501Y and Y505H in 
Omicron (Fig. 3j).

With regard to drugs based on neutralizing antibodies, consistent 
with their escaping mutation profiles, the neutralization potency of 
LY-CoV016, LY-CoV555, REGN-10933, REGN-10987 and AZD1061 are 
greatly reduced by Omicron (Fig. 4a, Extended Data Fig. 9). The binding 
affinities of AZD8895 and BRII-196 towards the Omicron RBD are also 
largely reduced, probably owing to multiple mutations accumulating 
on the epitopes of these antibodies, such that AZD8895 and BRII-196 
did not neutralize Omicron (Extended Data Fig. 10). BRII-198 was not 
tested as the antibody sequence was not released. VIR-7831 retains 
strong RBD-binding capability; although G339 is part of its epitope, 
the G339D mutation in Omicron does not appear to affect the binding 
of VIR-7831. However, the IC50 of VIR-7831 is reduced to 181 ng ml−1, 
and may be subject to further reduction against Omicron with R346K. 
The binding affinity of DXP-604 against the Omicron RBD is markedly 
reduced compared to the wild-type RBD; nonetheless, it can still neu-
tralize Omicron at an IC50 of 287 ng ml−1—a reduction of nearly 30-fold 
compared to wild type (Fig. 4a). In addition, several neutralizing anti-
bodies in groups E and F have shown high potency against Omicron 
and broad pan-sarbecovirus neutralization ability, suggesting that 
they have promise for the development of neutralizing-antibody-based 
drugs (Fig. 4b). Many more neutralizing antibodies identified from 
SARS-CoV-1 convalescent individuals who have been vaccinated are 
waiting to be characterized.

The high-throughput yeast screening method provides a labora-
tory means for quickly examining the epitope of a certain neutralizing 
antibody; however, the throughput that can be achieved using FACS 
is limited and cannot be used to evaluate a large library of antibodies. 
Using MACS, we were able to increase the throughput by two orders 
of magnitude. In doing so, we were able to gain statistical confidence 
for the survival proportion of anti-RBD neutralizing antibodies in each 
epitope group against Omicron. The experimental accuracy for pre-
dicting the neutralization reduction for single-amino-acid mutations 
is relatively high (Extended Data Fig. 8a, b); however, mutation screen-
ing through yeast display is not at present able to effectively examine 
the consequences of multiple mutations simultaneously, and this will 
require further technical optimization.

So far, a large number of SARS-CoV-2 anti-RBD neutralizing antibod-
ies have been identified from SARS-CoV-2 convalescent individuals and 
from individuals who have been vaccinated. The most potent antibodies 
are frequently found in groups A–D, which tend to directly interfere 
with the binding of ACE2. Nevertheless. the neutralizing powers of these 
antibodies are often abrogated by RBD mutations in the evolutionary 
arms race between SARS-CoV-2 and human humoral immunity. Indeed, 
we showed that Omicron would escape most of the SARS-CoV-2 neutral-
izing antibodies in this collection (Extended Data Fig. 5e). On the other 
hand, group E and F antibodies are less affected by Omicron, probably 
because they are not abundant in the population48 and hence exert less 
evolutionary pressure for RBD to mutate in the corresponding epitope 
groups. These neutralizing antibodies target conserved RBD regions 
in sarbecovirus and are therefore ideal targets for the future develop-
ment of pan-sarbecovirus antibody-based drugs.
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Methods

Isolation of human peripheral blood mononuclear cells
SARS-CoV-2 convalescent individuals, SARS-CoV-1 convalescent individu-
als and individuals who had been vaccinated against SARS-CoV-2 were 
recruited on the basis of previous SARS-CoV-2 infection or SARS-CoV-1 
infection at Beijing Youan and Ditan hospitals. Relevant experiments 
regarding SARS-CoV-2 convalescent individuals and vaccinated indi-
viduals were approved by the Beijing Youan Hospital Research Ethics 
Committee (ethics committee archiving no. LL-2020-010-K). Relevant 
experiments regarding SARS-CoV-1 convalescent individuals were 
approved by the Beijing Ditan Hospital Capital Medical University  
(ethics committee archiving no. LL-2021-024-02). All participants pro-
vided written informed consent for the collection of information, and for 
their clinical samples to be stored and used for research. It was agreed that 
data generated from the research were to be published. Detailed informa-
tion on SARS-CoV-2 convalescent individuals and vaccinated individuals 
has been published previously11. In brief, blood samples from short-term 
convalescent individuals were obtained at day 62 on average after the 
onset of symptoms. Blood samples from long-term convalescent indi-
viduals were obtained at day 371 on average after the onset of symptoms.  
No vaccination was received before blood collection. Blood samples from 
individuals who had been vaccinated against SARS-CoV-2 were obtained 
two weeks after complete vaccination of ZF2001 (RBD-subunit vaccine). 
For SARS-CoV-1 convalescent individuals who received SARS-CoV-2 vac-
cines (average age 58, n = 21), all recruited participants were previously 
identified for SARS-CoV-1 infection in 2003, and received a two-dose 
vaccination of CoronaVac and a booster dose of ZF2001 with a 180-day 
interval. Blood samples (20 ml) from the SARS-CoV-1 convalescent indi-
viduals who were vaccinated against SARS-CoV-2 were obtained two 
weeks after the booster shot. Three healthy vaccinated donors (average 
age 25) were also included to serve as negative control for FACS gat-
ing. Peripheral blood mononuclear cells (PBMCs) were separated from 
whole-blood samples based on the detailed protocol described previ-
ously11. In brief, blood samples were first diluted with 2% fetal bovine 
serum (FBS) (Gibco) in phosphate buffered saline (PBS) (Invitrogen) and 
subjected to Ficoll (Cytiva) gradient centrifugation. After red blood cell 
lysis and washing steps, PBMCs were resuspended with 2% FBS in PBS for 
downstream B cell isolation or 10% dimethyl sulfoxide (Sigma-Aldrich) 
in FBS for further preservation.

Antigen-specific B cell sorting and sequencing
Starting with freshly isolated or thawed PBMCs, B cells were enriched 
by positive selection using a CD19+ B cell isolation kit according to 
the manufacturer’s instructions (STEMCELL). The enriched B cells 
were stained in FACS buffer (1× PBS, 2% FBS, 1 mM EDTA) with the fol-
lowing anti-human antibodies and antigens: For every 106 cells, 3 μl 
FITC anti-CD19 antibody (Biolegend, 392508), 3 μl FITC anti-CD20 
antibody (Biolegend, 302304), 3.5 μl Brilliant Violet 421 anti-CD27 
antibody (Biolegend, 302824), 3 μl PE/Cyanine7 anti-IgM(Biolegend, 
314532), and fluorophore-labelled RBD and ovalbumin (Ova) for 30 min 
on ice. Cells were stained with 5 μl 7-AAD (eBioscience, 00-6993-50) for 
10 min before sorting. Biotinylated RBD of SARS-CoV-1 (Sino Biological, 
40634-V27H-B) or SARS-CoV-2 (Sino Biological, 40592-V27H-B) were 
multimerized with fluorescently labelled streptavidin (SA) for 1 h at 
4 °C. RBD was mixed with SA-PE (Biolegend, 405204) and SA-APC (Bio-
legend, 405207) at a 4:1 molar ratio. For every 106 cells, 6 ng SA was used 
to stain. Single CD19 or CD20+ CD27+IgM−Ova−RBD-PE+RBD-APC+ live 
B cells were sorted on an Astrios EQ (BeckMan Coulter) into PBS con-
taining 30% FBS (Supplementary Data 2). FACS sorting was controlled 
by Summit 6.0 (Beckman Coulter). FACS data analyses were done by 
FlowJo v.10.8. Cells obtained after FACS were sent for 5′-mRNA and 
V(D)J library preparation as previously described11, which were further 
submitted for Illumina sequencing on a Hiseq 2500 platform, with the 
26×91 paired-end reading mode.

V(D)J sequence data analysis
The raw FASTQ files were processed by Cell Ranger (v.6.1.1) pipeline 
using GRCh38 reference. Sequences were generated using ‘cellranger 
multi’ or ‘cellranger vdj’ with default parameters. Antibody sequences 
were processed by IMGT/DomainGapAlign (v.4.10.2) to obtain the 
annotations of V(D)J, regions of complementarity determining regions 
(CDRs), and the mutation frequency49,50. The mutation count divided 
by the length of the V gene peptide is defined as the amino acid muta-
tion rate of the V gene.

Recombinant antibody production
Paired immunoglobulin heavy and light chain genes obtained from 10X 
Genomics V(D)J sequencing and analysis were submitted to recombi-
nant monoclonal antibody synthesis. In brief, heavy and light genes 
were cloned into expression vectors, respectively, based on Gibson 
assembly, and subsequently co-transfected into HEK293F cells (Thermo 
Fisher Scientific, R79007). The secreted monoclonal antibodies from 
cultured cells were purified by protein A affinity chromatography. The 
specificities of these antibodies were determined by ELISA.

ELISA
ELISA plates were coated with RBD (SARS-CoV-2 wild type, SARS-CoV-2 
Omicron, SARS-CoV-1 RBD, Sino Biological) at 0.03 μg ml−1 and 1 μg ml−1 
in PBS at 4 °C overnight. After standard washing and blocking, 100 μl of 
1 μg ml−1 antibodies were added to each well. After a 2-h incubation at 
room temperature, plates were washed and incubated with 0.08 μg ml−1 
goat anti-human IgG (H+L)/HRP ( Jackson, 109-035-003) for 1 h incuba-
tion at room temperature. Tetramethylbenzidine (TMB) (Solarbio) was 
then added, and the reaction was stopped by adding H2SO4. Optical 
density at 450 nm (OD450) was measured by an ELISA microplate reader. 
An antibody is defined as ELISA-positive when the OD450 (1 μg ml−1 
RBD) is three times larger than the negative control, which uses an 
H7N9-specific human IgG1 antibody (HG1K, Sino Biological).

Pseudovirus neutralization assay
A pseudovirus neutralization assay was performed to evaluate the neu-
tralizing ability of antibodies. The detailed process has been previously 
described12. In brief, serially diluted antibodies were first incubated with 
pseudotyped virus for 1 h, and the mixture was then incubated with Huh-7 
cells. After a 24-h incubation in an incubator at 37 °C, cells were collected 
and lysed with luciferase substrate (PerkinElmer), then underwent lumi-
nescence intensity measurement by a microplate reader. IC50 was deter-
mined by a four-parameter non-linear regression model using PRISM 
(v.9.0.1). Omicron pseudovirus contains the following mutations: A67V, 
H69del, V70del, T95I, G142D, V143del, Y144del, Y145del, N211del, L212I, 
ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, 
T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, 
H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K and L981F.

Biolayer interferometry
Biolayer interferometry (BLI) assays were conducted on an Octet 
R8 Protein Analysis System (ForteBio) following the manufacturer’s 
instructions. In brief, after baseline calibration, Protein A biosensors 
(ForteBio) were immersed with antibodies to capture the antibody, then 
sensors were immersed in PBS with 0.05% Tween-20 to the baseline. 
After association with different concentrations of RBD of SARS-CoV-2 
variants (Omicron RBD: 40592-V08H85), disassociation was conducted. 
Data were recorded using Octet BLI Discovery (12.2) and analysed using 
Octet BLI Analysis (12.2).

Construction of RBD deep mutational scanning library
The yeast display RBD mutant libraries used here were constructed as 
described previously12, on the basis of the spike RBD from SARS-CoV-2 
(NCBI GenBank: MN908947, residues N331–T531) with the modification 



that instead of a 16-nucleotide barcode (N16), a unique 26-nucleotide 
(N26), barcode was appended to each RBD variant as an identifier, 
to decrease sequencing cost by eliminating the use of PhiX. In brief, 
three rounds of mutagenesis PCR were performed with designed and 
synthesized mutagenetic primer pools; to support our conclusions, 
we constructed two RBD mutant libraries independently. RBD mutant 
libraries were then cloned into the pETcon 2649 vector and the assem-
bled products were electroporated into electrocompetent DH10B cells 
to enlarge the plasmid yield. Plasmid extracted form Escherichia coli 
were transformed into the EBY100 strain of Saccharomyces cerevisiae  
using the method described in a previous report51. Transformed yeast 
populations were screened on SD-CAA selective plate and further 
cultured in SD-CAA liquid medium at a large scale. The resulted yeast 
libraries were flash-frozen by liquid nitrogen and preserved at −80 °C.

PacBio library preparation, sequencing and analysis
The correspondence of RBD gene sequence in mutant library and 
N26 barcode was obtained by PacBio sequencing. First, the bacteri-
ally extracted plasmid pools were digested by NotI restriction enzyme 
and purified by agarose gel electrophoresis, then SMRTbell ligation was 
performed. Four RBD mutant libraries were sequenced in one SMRT 
cell on a PacBio Sequel ll platform. PacBio SMRT sequencing subreads 
were converted to HiFi ccs reads with pbccs, and then processed with 
a slightly modified version of the script previously described12 to gen-
erate the barcode-variant dictionary. To reduce noise, variants that 
contained stop codons or that were supported by only one ccs read 
were removed from the dictionary and ignored during further analysis.

MACS-based profiling of escape mutations
ACE2-binding mutants were sorted using magnetic beads to eliminate 
non-functional RBD variants. In brief, the biotin binder beads (Thermo 
Fisher Scientific) were washed and prepared as per the manufacturer’s 
instructions and incubated with biotinylated ACE2 protein (Sino Biologi-
cal) at room temperature with mild rotation. The ACE2-bound beads were 
washed twice and resuspended with 0.1% BSA buffer (PBS supplemented 
with 0.1% bovine serum albumin), ready for ACE2 positive selection. Trans-
formed yeast libraries were inoculated into SD-CAA and grown at 30 °C 
with shaking for 16–18 h, then back-diluted into SG-CAA at 23 °C with 
shaking to induce RBD surface expression. Yeasts were collected and 
washed twice with 0.1% BSA buffer and incubated with the aforemen-
tioned ACE2-bound beads at room temperature for 30 min with mild 
rotating. Then, the bead-bound cells were washed, resuspended with 
SD-CAA medium and grown at 30 °C with shaking. After overnight growth, 
the bead-unbound yeasts were separated with a magnet and cultured on 
a large scale. The above ACE2-positive selected yeast libraries were pre-
served at −80 °C in aliquots as a seed bank for antibody escape mapping.

One aliquot of the ACE2-positive selected RBD library was thawed and 
inoculated into SD-CAA, then grown at 30 °C with shaking for 16–18 h. 
120 OD units were back-diluted into SG-CAA medium and induced for 
RBD surface expression. Two rounds of sequential negative selection 
to sort yeast cells that escape Protein A conjugated antibody binding 
were performed according to the manufacturer’s protocol. In brief, 
Protein A magnetic beads (Thermo Fisher Scientific) were washed and 
resuspended in PBST (PBS with 0.02% Tween-20). Then beads were 
incubated with neutralizing antibody and rotated at room temperature 
for 30 min. The antibody-conjugated beads were washed and resus-
pended in PBST. Induced yeast libraries were washed and incubated with 
antibody-conjugated beads for 30 min at room temperature with agita-
tion. The supernatant was separated and underwent a second round of 
negative selection to ensure full depletion of antibody-binding yeast.

To eliminate yeast that did not express RBD, MYC-tag-based RBD posi-
tive selection was conducted according to the manufacturer’s protocol. 
First, anti-c-Myc magnetic beads (Thermo Fisher Scientific) were washed 
and resuspended with 1× TBST (TBS with Tween-20), then the prepared 
beads were incubated for 30 min with the antibody-escaping yeasts after 

two rounds of negative selection. Yeasts bound by anti-c-Myc magnetic 
beads were washed with 1× TBST and grown overnight in SD-CAA to 
expand the yeast population before plasmid extraction.

Overnight cultures of MACS-sorted antibody-escaped and 
ACE2-preselected yeast populations were passed on to a yeast plasmid 
extraction kit (Zymo Research). PCRs were performed to amplify the 
N26 barcode sequences as previously described13. The PCR products 
were purified with 0.9X Ampure XP beads (Beckman Coulter) and sub-
mitted to 75-bp single-end Illumina Nextseq 500 sequencing.

Processing of deep mutational scanning data
Raw single-end Illumina sequencing reads were trimmed and aligned 
to the reference barcode-variant dictionary generated as described 
above to get the count of each variant with the dms_variants Python 
package (v.0.8.9). For libraries with N26 barcodes, we slightly modified 
the illuminabarcodeparser class of this package to tolerate one low 
sequencing quality base in the barcode region. The escape score of 
variant X is defined as F×(nX,ab/Nab)/(nX,ref/Nref), in which nX,ab and nX,ref 
are the number of detected barcodes for variant X, and Nab and Nref 
are the total number of barcodes in the antibody-selected (ab) library 
and the reference (ref) library, respectively, as described previously12. 
Different to FACS experiments, as we couldn’t measure the number 
of cells retained after MACS selection precisely, here F is considered 
as a scaling factor to transform raw escape fraction ratios to the 0–1 
range, and is calculated from the first and 99th percentiles of raw escape 
fraction ratios. Scores less than the first percentile or larger than the 
99th percentile are considered to be outliers and set to zero or one, 
respectively. For each experiment, barcodes detected by fewer than 
6 reads in the reference library were removed to reduce the effect of 
sampling noise, and variants with ACE2 binding below −2.35 or RBD 
expression below −1 were removed as previously described12. Finally, 
we built global epistasis models with the dms_variants package for each 
library to estimate single mutation escape scores, using the Python 
scripts provided in a previous report16. To reduce experimental noise, 
a site was retained for further analysis only if its total escape score was 
at least 0.01, and at least 3 times greater than the median score of all 
sites. For antibodies measured by two independent experiments, only 
sites that passed the filter in both experiments were retained. Logo 
plots in Figs. 2, 3, Extended Data Fig. 2 and Supplementary Data 1 are 
generated by the Python package logomaker (v.0.8).

Antibody clustering
Antibody clustering and epitope group identification were performed 
on the basis of the N×M escape score matrix, in which N is the number of 
antibodies that pass the quality controlling filters, and M is the number 
of informative sites on the SARS-CoV-2 RBD. Each entry of the matrix 
Anm refers to the total escape score of all kinds of mutations on site m 
of antibody n. The dissimilarity between two antibodies is defined on 
the basis of the Pearson’s correlation coefficient of their escape score 
vectors; that is, Dij = 1 − Corr(Ai, Aj), in which Corr(Ai, Aj) = xixj/|xi||xj| 
and vector xi = Ai − Mean(Ai). Sites with at least six escaped antibod-
ies (site escape score > 1) were considered informative and selected 
for dimensionality reduction and clustering. We used the R function 
cmdscale to convert the cleaned escape matrix into an N×6 feature 
matrix by multidimensional scaling (MDS) with the dissimilarity metric 
described above, followed by unsupervised k-medoids clustering within 
this 6-dimensional antibody feature space, using the pam function of 
the R package cluster (v.2.1.1). Finally, two-dimensional t-SNE embed-
dings were generated with the Rtsne package (v.0.15) for visualization. 
Two-dimensional t-SNE plots are generated by ggplot2 (v.3.3.3), and 
heat maps are generated by the ComplexHeatmap package (v.2.6.2).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Data availability
Processed escape maps for neutralizing antibodies are available in Sup-
plementary Data 1 (as figures) or at https://github.com/sunneyxielab/
SARS-CoV-2-RBD-Abs-HTDMS (as mutation escape score data). Raw 
Illumina and PacBio sequencing data are available through the NCBI 
Sequence Read Archive BioProject (accession number PRJNA787091). 
We used vdj_GRCh38_alts_ensembl-5.0.0 as the reference for V(D)J 
alignment, which can be obtained from https://support.10xgenomics.
com/single-cell-vdj/software/downloads/latest. IMGT/DomainGa-
pAlign is based on the built-in latest IMGT antibody database, and we 
left the ‘Species’ parameter as ‘Homo sapiens’ and kept the others as 
default. FACS-based deep mutational scanning datasets can be down-
loaded from https://media.githubusercontent.com/media/jbloomlab/
SARS2_RBD_Ab_escape_maps/main/processed_data/escape_data.csv. 
Processed data from this study have also been added to this repository.

Code availability
Scripts for analysing SARS-CoV-2 escaping mutation profile data and 
for reproducing figures in this paper are available at https://github.
com/sunneyxielab/SARS-CoV-2-RBD-Abs-HTDMS.
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a b

Extended Data Fig. 1 | Illustration of the SARS-CoV-2 spike protein with 
Omicron’s mutations. a, SARS-CoV-2 D614G spike protein structure overlayed 
with Omicron mutations. Omicron’s (BA.1) popular mutations are marked by 
red (for substitutions), blue (for insertions) and grey balls (for deletions).  

b, NTD-binding neutralizing antibodies shown together in complex with NTD. 
Substitutions and deletions of Omicron NTD are coloured blue and red, 
respectively.
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Extended Data Fig. 2 | Comparison between FACS- and MACS-based deep 
mutational scanning. Deep mutational scanning maps with MACS-based 
(left) and FACS-based assays (right) of seven therapeutic neutralizing 
antibodies that have received emergency use authorization. Sites mutated in 

the Omicron variant are highlighted. Mutation amino acids of each site are 
shown by single letters. The heights represent mutation escape score, and 
colours represent chemical properties. FACS-based data were obtained from 
public datasets by Jesse Bloom.
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Extended Data Fig. 4 | Heavy chain V/J segment recombination of 
neutralizing antibodies of each epitope group. a–f, Chord diagrams showing 
the heavy chain V segment and J segment recombination of epitope group A  
(a), B (b), C (c), D (d), E (e) and F (f). The width of the arc linking a V segment to a J 

segment indicates the antibody number of the corresponding recombination. 
The inner layer scatter plots show the V segment amino acid mutation rate, and 
black strips show the 25%~75% quantile of mutation rates.
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Extended Data Fig. 5 | Neutralization potency, heavy chain CDR3 length 
and mutation rate distribution for neutralizing antibodies of each epitope 
group. a, The length of H chain complementarity-determining region 3 
(HCDR3) amino acid sequence for neutralizing antibodies in each epitope 
group (n = 66, 26, 57, 27, 39, 32 antibodies for epitope group A, B, C, D, E, F, 
respectively). HCDR3 lengths are displayed as mean  ± s.d. b, The V segment 
amino acid mutation rate for neutralizing antibodies in each epitope group 
(n = 66, 26, 57, 27, 39, 32 antibodies for epitope group A, B, C, D, E, F, 

respectively). Mutation rates are calculated are displayed as mean ± s.d.  
c–e, The IC50 against D614G (c), Beta (d) and Omicron (e) variants for 
neutralizing antibodies in each epitope group (n = 66, 26, 57, 27, 39, 32 
antibodies for epitope group A, B, C, D, E, F, respectively). IC50 values are 
displayed as mean  ±  s.d. in the log10 scale. Pseudovirus assays for each variant 
are biologically replicated twice. Dotted lines show the detection limit, which is 
from 0.0005 μg/mL to 10 μg/mL. IC50 geometric means are also labelled on the 
figure.
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Extended Data Fig. 10 | BLI response between neutralizing-antibody-based 
drugs and the RBD of SARS-CoV-2 wild type, Beta or Omicron strains. 
Antibodies were captured by Protein A sensor. The concentrations of RBD are 

shown in different colours. Dissociation constant (KD), association constant 
(ka), and dissociation rate constant (kd) are labelled. Neutralizing antibodies 
without binding are marked as ‘Escaped’.
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