9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Removal and Recovery of Phosphate From Water Using Sorption

      , , ,
      Critical Reviews in Environmental Science and Technology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: not found
          • Article: not found

          A handful of carbon.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arsenic removal from water/wastewater using adsorbents--A critical review.

            Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, Japan and India. Among 21 countries in different parts of the world affected by groundwater arsenic contamination, the largest population at risk is in Bangladesh followed by West Bengal in India. Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation) with far less attention paid to adsorption. No previous review is available where readers can get an overview of the sorption capacities of both available and developed sorbents used for arsenic remediation together with the traditional remediation methods. We have incorporated most of the valuable available literature on arsenic remediation by adsorption ( approximately 600 references). Existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Arsenic sorption by commercially available carbons and other low-cost adsorbents are surveyed and critically reviewed and their sorption efficiencies are compared. Arsenic adsorption behavior in presence of other impurities has been discussed. Some commercially available adsorbents are also surveyed. An extensive table summarizes the sorption capacities of various adsorbents. Some low-cost adsorbents are superior including treated slags, carbons developed from agricultural waste (char carbons and coconut husk carbons), biosorbents (immobilized biomass, orange juice residue), goethite and some commercial adsorbents, which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior. Immobilized biomass adsorbents offered outstanding performances. Desorption of arsenic followed by regeneration of sorbents has been discussed. Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates. Arsenic concentrate treatment and disposal obtained is briefly addressed. This issue is very important but much less discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures.

              The combined adsorption and partition effects of biochars with varying fractions of noncarbonized organic matter have not been clearly defined. Biochars, produced by pyrolysis of pine needles at different temperatures (100-700 degrees C, referred as P100-P700), were characterized by elemental analysis, BET-N2 surface areas and FTIR. Sorption isotherms of naphthalene, nitrobenzene, and m-dinitrobenzene from water to the biochars were compared. Sorption parameters (N and logKf) are linearly related to sorbent aromaticities, which increase with the pyrolytic temperature. Sorption mechanisms of biochars are evolved from partitioning-dominant at low pyrolytic temperatures to adsorption-dominant at higher pyrolytic temperatures. The quantitative contributions of adsorption and partition are determined by the relative carbonized and noncarbonized fractions and their surface and bulk properties. The partition of P100-P300 biochars originates from an amorphous aliphatic fraction, which is enhanced with a reduction of the substrate polarity; for P400-P600, the partition occurs with a condensed aromatic core that diminishes with a further reduction of the polarity. Simultaneously, the adsorption component exhibits a transition from a polarity-selective (P200-P400) to a porosity-selective (P500-P600) process, and displays no selectivity with P700 and AC in which the adsorptive saturation capacities are comparable to predicted values based on the monolayer surface coverage of molecule.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Environmental Science and Technology
                Critical Reviews in Environmental Science and Technology
                Informa UK Limited
                1064-3389
                1547-6537
                March 10 2014
                April 18 2014
                March 10 2014
                April 18 2014
                : 44
                : 8
                : 847-907
                Article
                10.1080/10643389.2012.741311
                88980d5f-665b-437b-89e7-cfa25ac5646f
                © 2014
                History

                Comments

                Comment on this article