16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ethnopharmacological relevance

          Polygonum multiflorum Thunb., which is known as Heshouwu (何首乌 in Chinese) in China. It is traditionally valued and reported for hair-blacking, liver and kidney-tonifying and anti-aging effects as well as low toxicity. The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of Polygonum multiflorum, based on the scientific literature. Moreover, trends and perspectives for future investigation of this plant are discussed. It will build up a new foundation for further study on Polygonum multiflorum.

          Materials and methods

          A systematic review of the literature on Polygonum multiflorum was performed using several resources, including classic books on Chinese herbal medicine and various scientific databases, such as PubMed, SciFinder, the Web of Science, Science Direct, China Knowledge Resource Integrated (CNKI).

          Results

          Polygonum multiflorum is widely distributed throughout the world and has been used as a traditional medicine for centuries in China. The ethnomedical uses of Polygonum multiflorum have been recorded in many provinces of China and Japan for nine species of adulterants in six families. More than 100 chemical compounds have been isolated from this plant, and the major components have been determined to be stilbenes, quinones, flavonoids and others. Crude extracts and pure compounds of this plant are used as effective agents in pre-clinical and clinical practice due to their anti-aging, anti-hyperlipidaemia, anti-cancer and anti-inflammatory effects and to promote immunomodulation, neuroprotection, and the curing of other diseases. However, these extracts can also lead to hepatotoxicity, nephrotoxicity and embryonic toxicity. Pharmacokinetic studies have demonstrated that the main components of Polygonum multiflorum, such as 2,3,5,4′-tetrahydroxystilbene-2-O-β- d-glucopyranoside and emodin are distributed among many organs and tissues.

          Conclusion

          Therapeutic potential of Polygonum multiflorum has been demonstrated in the conditions like Alzheimer׳s disease, Parkinson׳s disease, hyperlipidaemia, inflammation and cancer, which is attributed to the presence of various stilbenes, quinones, flavonoids, phospholipids and other compounds in the drug. On the other hand, the adverse effects (hepatotoxicity, nephrotoxicity, and embryonic toxicity) of this plant were caused by the quinones, such as emodin and rhein. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored, especially the combined anthraquinones (Emodin-8-O-β- d-glucopyranoside, Physcion-8-O-β- d-glucopyranoside, etc.) and the variety of stilbenes.

          Graphical abstract

          Related collections

          Most cited references150

          • Record: found
          • Abstract: not found
          • Article: not found

          Parkinson's disease. First of two parts.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction

            Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus (SARS-CoV). SARS-CoV spike (S) protein, a type I membrane-bound protein, is essential for the viral attachment to the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening 312 controlled Chinese medicinal herbs supervised by Committee on Chinese Medicine and Pharmacy at Taiwan, we identified that three widely used Chinese medicinal herbs of the family Polygonaceae inhibited the interaction of SARS-CoV S protein and ACE2. The IC50 values for Radix et Rhizoma Rhei (the root tubers of Rheum officinale Baill.), Radix Polygoni multiflori (the root tubers of Polygonum multiflorum Thunb.), and Caulis Polygoni multiflori (the vines of P. multiflorum Thunb.) ranged from 1 to 10 μg/ml. Emodin, an anthraquinone compound derived from genus Rheum and Polygonum, significantly blocked the S protein and ACE2 interaction in a dose-dependent manner. It also inhibited the infectivity of S protein-pseudotyped retrovirus to Vero E6 cells. These findings suggested that emodin may be considered as a potential lead therapeutic agent in the treatment of SARS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Missing pieces in the Parkinson's disease puzzle.

              Parkinson's disease is a neurodegenerative process characterized by numerous motor and nonmotor clinical manifestations for which effective, mechanism-based treatments remain elusive. Here we discuss a series of critical issues that we think researchers need to address to stand a better chance of solving the different challenges posed by this pathology.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Ethnopharmacol
                J Ethnopharmacol
                Journal of Ethnopharmacology
                Elsevier Ireland Ltd.
                0378-8741
                1872-7573
                18 November 2014
                15 January 2015
                18 November 2014
                : 159
                : 158-183
                Affiliations
                [0005]School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
                Author notes
                [* ]Corresponding author. Fax: +86 1084738607. njtcm@ 123456263.net
                [1]

                These authors contributed equally to this study and share first authorship.

                Article
                S0378-8741(14)00792-2
                10.1016/j.jep.2014.11.009
                7127521
                25449462
                8859ee69-eef9-48fd-a075-8aaf8231abc3
                Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 25 June 2014
                : 7 November 2014
                : 7 November 2014
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                polygonum multiflorum thunb,traditional usages,botany,phytochemistry,pharmacology and toxicology

                Comments

                Comment on this article