11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Use of a Pressure-Indicating Film to Determine the Effect of Liner Type on the Measured Teat Load Caused by a Collapsing Liner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During milking the teat cup liner is the interface between the teat of a dairy cow and the milking system, so it should be very well adapted to the teat. Therefore, the aim of the present study was to determine the effect of liner type on the directly measuring teat load caused by a collapsing liner with a pressure-indicating film. The Extreme Low pressure-indicating film was used to detect the effect of six different liners on teat load. For each liner, six positions in the teat cup were specified, and six repetitions were performed for each position with a new piece of film each time. Analysis of variance was performed to detect differences between the six liners, the positions within a liner, and the measuring areas. The pressure applied to the teat by a liner depends on the technical characteristics of the liner, especially the shape of the barrel, and for all tested liners, a higher teat load was found at the teat end. In conclusion, with the help of pressure-indicating film, it is possible to determine the different effects of liner type by directly measuring teat load due to liner collapse.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Infrared Thermography and Ultrasonography to Indirectly Monitor the Influence of Liner Type and Overmilking on Teat Tissue Recovery

          Eight Danish Holstein cows were milked with a 1-mm thick specially designed soft liner on their right rear teat and a standard liner mounted under extra high tension on their left rear teat. Four of the animals were overmilked for 5 min. Rear teats were subjected to ultrasound examination on the first day and to infrared thermography on the second day. Teats were submersed in ethanol 20 min post-milking on the second day. Ultrasonography measurements showed that teat canal length increased by 30–41% during milking. Twenty minutes after milking, teats milked with modified standard liners still had elongated teat canals while teats milked with the soft liner were normalized. Overmilking tended to increase teat wall thickness. Approximately 80% of variability in teat canal length, from before teat preparation to after milking, could be explained by changes during teat preparation. Thermography indicated a general drop in teat temperature during teat preparation. Teat temperature increased during milking and continued to increase until the ethanol challenge induced a significant drop. Temperatures approached pre-challenge rather than pre-milking temperatures within 10 minutes after challenge. Teat temperatures were dependent on type of liner. Mid-teat temperatures post-challenge relative to pre-teat preparation were dependent on overmilking. Thermography and ultrasound were considered useful methods to indirectly and non invasively evaluate teat tissue integrity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methods of estimating liner compression.

            The aim of this study was to compare 2 methods of measuring overpressure (OP) using a new test device designed to make OP measurements more quickly and accurately. Overpressure was measured with no pulsation (OP np) and with limited pulsation (OP lp) repeatedly on the same cow during a single milking. Each of the 6 liners (3 round liners and 3 triangular liners) used in this study were tested on the same 6 experimental cows. Both OP np and OP lp were measured on all 4 teats of each experimental cow twice for each liner. The order of OP np and OP lp alternated sequentially for each cow test. The OP results for the 6 liners were also compared with liner compression estimated on the same liners with a novel artificial teat sensor (ATS). The OP lp method showed small but significantly higher values than the OP np method (13.9 vs. 13.4 kPa). The OP lp method is recommended as the preferred method as it more closely approximates normal milking condition. Overpressure values decreased significantly between the first and the following measurements, (from 15.0 to 12.4 kPa). We recommend performing the OP test at a consistent time, 1 min after attaching the teatcup to a well-stimulated teat, to reduce the variability produced by OP changing during the peak flow period. The new test device had several advantages over previously published methods of measuring OP. A high correlation between OP and liner compression estimated by the ATS was found, but difficulties were noted when using the ATS with triangular liners.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Effect of liner design, pulsator setting, and vacuum level on bovine teat tissue changes and milking characteristics as measured by ultrasonography

              Friesian-type dairy cows were milked with different machine settings to determine the effect of these settings on teat tissue reaction and on milking characteristics. Three teat-cup liner designs were used with varying upper barrel dimensions (wide-bore WB = 31.6 mm; narrow-bore NB = 21.0 mm; narrow-bore NB1 = 25.0 mm). These liners were tested with alternate and simultaneous pulsation patterns, pulsator ratios (60:40 and 67:33) and three system vacuum levels (40, 44 and 50 kPa). Teat tissue was measured using ultrasonography, before milking and directly after milking. The measurements recorded were teat canal length (TCL), teat diameter (TD), cistern diameter (CD) and teat wall thickness (TWT). Teat tissue changes were similar with a system vacuum level of either 50 kPa (mid-level) or 40 kPa (low-level). Widening the liner upper barrel bore dimension from 21.0 mm (P < 0.01) or 25.0 mm (P < 0.001) to 31.6 mm increased the magnitude of changes in TD and TWT after machine milking. Milk yield per cow was significantly (P < 0.05) higher and cluster-on time was reduced (P < 0.01) with the WB cluster as compared to the NB1 cluster. Minimum changes in teat tissue parameters were achieved with system vacuum level of 40 kPa and 50 kPa using NB and WB clusters, respectively. Similar changes in teat tissue and milk yield per cow were observed with alternate and simultaneous pulsation patterns. Widening pulsator ratio from 60:40 to 67:33 did not have negative effects on changes in teat tissue and had a positive effect on milk yield and milking time. Milk liner design had a bigger effect on teat tissue changes and milking characteristics than pulsation settings.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                13 April 2017
                April 2017
                : 17
                : 4
                : 855
                Affiliations
                [1 ]Leibniz-Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, Potsdam 14469, Germany; VPaul@ 123456atb-potsdam.de (V.P.); cammon@ 123456atb-potsdam.de (C.A.)
                [2 ]Hochschule Neubrandenburg, University of Applied Sciences, Department of Agricultural Machinery, Brodaer Straße 2, Neubrandenburg 17033, Germany; rose@ 123456hs-nb.de
                Author notes
                [* ]Correspondence: sdemba@ 123456atb-potsdam.de ; Tel.: +49-331-5699-521
                Article
                sensors-17-00855
                10.3390/s17040855
                5424732
                28406465
                84025767-6ecb-4858-bf82-50a83f22ed33
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 March 2017
                : 11 April 2017
                Categories
                Article

                Biomedical engineering
                sensor-based detection,pressure sensor,teat load,liner collapse,machine milking

                Comments

                Comment on this article