8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Influence of Salt Solution on Morphological Changes in a Geosynthetic Clay Liner

      Advances in Materials Science and Engineering
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Morphological variations of geosynthetic clay liner (GCL) samples, hydrated with two different permeates, distilled water and NaCl solution (100 mM concentration), were observed in detail using microscopic analysis. After the GCL samples were hydrated with the NaCl solution, they were observed with an optical microscope. While the surface of the treated GCL samples was similar to the surface of the untreated GCL, a crystal deposit was found on the surface of the treated samples. Using a scanning electron microscope (SEM), a more solid appearance was observed for the bentonite particles contained in the GCL after the sample was hydrated with distilled water in comparison to the GCL sample that was hydrated with the NaCl solution. It appears that salt solution hydration results in less swelling of the bentonite particles. Furthermore, the energy-dispersive X-ray spectrometer (EDS) results showed that distilled water hydration had no effect on the distribution of the elements contained in the GCL samples. However, bound chlorine was observed, which demonstrated that the bentonite particles had absorbed the NaCl solution. In addition, changes in the hydraulic conductivity of the hydrated GCL samples were also observed.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Landfill leachate treatment: Review and opportunity.

          In most countries, sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). In spite of many advantages, generation of heavily polluted leachates, presenting significant variations in both volumetric flow and chemical composition, constitutes a major drawback. Year after year, the recognition of landfill leachate impact on environment has forced authorities to fix more and more stringent requirements for pollution control. This paper is a review of landfill leachate treatments. After the state of art, a discussion put in light an opportunity and some results of the treatment process performances are given. Advantages and drawbacks of the various treatments are discussed under the items: (a) leachate transfer, (b) biodegradation, (c) chemical and physical methods and (d) membrane processes. Several tables permit to review and summarize each treatment efficiency depending on operating conditions. Finally, considering the hardening of the standards of rejection, conventional landfill leachate treatment plants appear under-dimensioned or do not allow to reach the specifications required by the legislator. So that, new technologies or conventional ones improvements have been developed and tried to be financially attractive. Today, the use of membrane technologies, more especially reverse osmosis (RO), either as a main step in a landfill leachate treatment chain or as single post-treatment step has shown to be an indispensable means of achieving purification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique.

            Mature landfill leachate is typically non-biodegradable and contains high concentration of refractory organics. The aim of this research was to optimize operating parameters in electro-Fenton process, for the removal of recalcitrant organics from semi-aerobic landfill leachate using response surface methodology (RSM). Effectiveness of important process parameters H(2)O(2)/Fe(2+) molar ratio, current density, pH and reaction time were determined, optimized and modeled successfully. Significant quadratic polynomial models were obtained (R(2)=0.9972 and 0.9984 for COD and color removals, respectively). Numerical optimization based on desirability function were employed; in a 43 min trial 94.07% of COD and 95.83% of color were removed at pH 3 and H(2)O(2)/Fe(2+) molar ratio 1, while current density was 49 mA/cm(2). The results indicate that E-Fenton process was an effective technology for semi-aerobic landfill leachate treatment. 2009 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review

              In most countries, sanitary landfill is nowadays the most common way to eliminate municipal solid wastes (MSWs). However, sanitary landfill generates large quantity of heavily polluted leachate, which can induce ecological risk and potential hazards towards public health and ecosystems. The application of advanced oxidation processes (AOPs) including ozone-based oxidation, Fenton oxidation, electrochemical oxidation, and other AOPs to treatment of landfill leachate was reviewed. The treatment efficiency in term of chemical oxygen demand (COD) of various AOPs was presented. Advantages and drawbacks of various AOPs were discussed. Among the AOPs reviewed, Fenton process should be the best choice, not only because it can achieve about 49~89% of COD removal with COD ranging from 837 to 8894 mg/L, but also because the process is cost-effective and simple in technological aspect, there is no mass transfer limitation (homogeneous nature) and both iron and hydrogen peroxide are nontoxic.
                Bookmark

                Author and article information

                Journal
                Advances in Materials Science and Engineering
                Advances in Materials Science and Engineering
                Hindawi Limited
                1687-8434
                1687-8442
                2016
                2016
                : 2016
                :
                : 1-8
                Article
                10.1155/2016/6349407
                7c2937c5-2e85-48f2-9b35-74787f83d631
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article