9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For many corals, the timing of broadcast spawning correlates strongly with a number of environmental signals (seasonal temperature, lunar, and diel cycles). Robust experimental studies examining the role of these putative cues in triggering spawning have been lacking until recently because it has not been possible to predictably induce spawning in fully closed artificial mesocosms. Here, we present a closed system mesocosm aquarium design that utilizes microprocessor technology to accurately replicate environmental conditions, including photoperiod, seasonal insolation, lunar cycles, and seasonal temperature from Singapore and the Great Barrier Reef ( GBR), Australia. Coupled with appropriate coral husbandry, these mesocosms were successful in inducing, for the first time, broadcast coral spawning in a fully closed artificial ex situ environment. Four Acropora species ( A. hyacinthus, A. tenuis, A. millepora, and A. microclados) from two geographical locations, kept for over 1 year, completed full gametogenic cycles ex situ. The percentage of colonies developing oocytes varied from ~29% for A. hyacinthus to 100% for A. millepora and A. microclados. Within the Singapore mesocosm, A. hyacinthus exhibited the closest synchronization to wild spawning, with all four gravid colonies releasing gametes in the same lunar month as wild predicted dates. Spawning within the GBR mesocosm commenced at the predicted wild spawn date but extended over a period of 3 months. Gamete release in relation to the time postsunset for A. hyacinthus, A. millepora, and A. tenuis was consistent with time windows previously described in the wild. Spawn date in relation to full moon, however, was delayed in all species, possibly as a result of external light pollution. The system described here could broaden the number of institutions on a global scale, that can access material for broadcast coral spawning research, providing opportunities for institutions distant from coral reefs to produce large numbers of coral larvae and juveniles for research purposes and reef restoration efforts.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Heterotrophy in tropical scleractinian corals.

          The dual character of corals, that they are both auto- and heterotrophs, was recognized early in the twentieth Century. It is generally accepted that the symbiotic association between corals and their endosymbiotic algae (called zooxanthellae) is fundamental to the development of coral reefs in oligotrophic tropical oceans because zooxanthellae transfer the major part of their photosynthates to the coral host (autotrophic nutrition). However, numerous studies have confirmed that many species of corals are also active heterotrophs, ingesting organisms ranging from bacteria to mesozooplankton. Heterotrophy accounts for between 0 and 66% of the fixed carbon incorporated into coral skeletons and can meet from 15 to 35% of daily metabolic requirements in healthy corals and up to 100% in bleached corals. Apart from this carbon input, feeding is likely to be important to most scleractinian corals, since nitrogen, phosphorus, and other nutrients that cannot be supplied from photosynthesis by the coral's symbiotic algae must come from zooplankton capture, particulate matter or dissolved compounds. A recent study showed that during bleaching events some coral species, by increasing their feeding rates, are able to maintain and restore energy reserves. This review assesses the importance and effects of heterotrophy in tropical scleractinian corals. We first provide background information on the different food sources (from dissolved organic matter to meso- and macrozooplankton). We then consider the nutritional inputs of feeding. Finally, we review feeding effects on the different physiological parameters of corals (tissue composition, photosynthesis and skeletal growth).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass spawning in tropical reef corals.

            Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata.

              Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO(2). Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO(2) levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO(2) increases that are expected to occur in this century [∼560 μatm (mid-CO(2)) and ∼800 μatm (high-CO(2))]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO(2), and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO(2) conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO(2)) and 50% (high-CO(2)) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance.
                Bookmark

                Author and article information

                Contributors
                jcraggs@horniman.ac.uk
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                15 November 2017
                December 2017
                : 7
                : 24 ( doiID: 10.1002/ece3.2017.7.issue-24 )
                : 11066-11078
                Affiliations
                [ 1 ] Aquatic Research Facility Environmental Sustainability Research Centre College of Life and Natural Sciences University of Derby Derby UK
                [ 2 ] Horniman Museum and Gardens London UK
                [ 3 ] School of Natural & Environmental Sciences Newcastle University Newcastle upon Tyne UK
                [ 4 ] SECORE International, Inc. Hilliard OH USA
                [ 5 ] Triton GmbH Düsseldorf Germany
                Author notes
                [*] [* ] Correspondence

                Jamie Craggs, Aquatic Research Facility, Environmental Sustainability Research Centre, College of Life and Natural Sciences, University of Derby, Derby, UK.

                Email: jcraggs@ 123456horniman.ac.uk

                Author information
                http://orcid.org/0000-0002-3787-2203
                http://orcid.org/0000-0002-9714-9009
                http://orcid.org/0000-0003-4983-8333
                Article
                ECE33538
                10.1002/ece3.3538
                5743687
                29299282
                81fefa8a-3ad3-4311-b8d8-06e03422093a
                © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 May 2017
                : 02 September 2017
                : 16 September 2017
                Page count
                Figures: 6, Tables: 1, Pages: 13, Words: 8399
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                ece33538
                December 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.8 mode:remove_FC converted:26.12.2017

                Evolutionary Biology
                acropora,gametogenic cycle ex situ,insolation,lunar cycle,photoperiod
                Evolutionary Biology
                acropora, gametogenic cycle ex situ, insolation, lunar cycle, photoperiod

                Comments

                Comment on this article