12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilization of transcription factors for controlling floral morphogenesis in horticultural plants

      review-article
      *
      Breeding Science
      Japanese Society of Breeding
      chimeric repressor, CRES-T, floral trait, promoter, transcription factor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factors play important roles not only in the development of floral organs but also in the formation of floral characteristics in various plant species. Therefore, transcription factors are reasonable targets for modifying these floral traits and generating new flower cultivars. However, it has been difficult to control the functions of transcription factors because most plant genes, including those encoding transcription factors, exhibit redundancy. In particular, it has been difficult to understand the functions of these redundant genes by genetic analysis. Thus, a breakthrough silencing method called chimeric repressor gene silencing technology (CRES-T) was developed specifically for plant transcription factors. This method transforms transcriptional activators into dominant repressors, and the artificial chimeric repressors suppress the function of transcription factors regardless of their redundancy. Among these chimeric repressors, some were found to be inappropriate for expression throughout the plant body because they resulted in deformities. For these chimeric repressors, utilization of floral organ-specific promoters overcomes this problem by avoiding expression throughout the plant body. In contrast, attachment of viral activation domain VP16 to transcriptional repressors effectively alters into transcriptional activators. This review presents the importance of transcription factors for characterizing floral traits, describes techniques for controlling the functions of transcription factors.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

          The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances on the regulation of anthocyanin synthesis in reproductive organs.

            Anthocyanins represent the major red, purple, violet and blue pigments in many flowers and fruits. They attract pollinators and seed dispersers and defend plants against abiotic and biotic stresses. Anthocyanins are produced by a specific branch of the flavonoid pathway, which is differently regulated in monocot and dicot species. In the monocot maize, the anthocyanin biosynthesis genes are activated as a single unit by a ternary complex of MYB-bHLH-WD40 transcription factors (MBW complex). In the dicot Arabidopsis, anthocyanin biosynthesis genes can be divided in two subgroups: early biosynthesis genes (EBGs) are activated by co-activator independent R2R3-MYB transcription factors, whereas late biosynthesis genes (LBGs) require an MBW complex. In addition to this, a complex regulatory network of positive and negative feedback mechanisms controlling anthocyanin synthesis in Arabidopsis has been described. Recent studies have broadened our understanding of the regulation of anthocyanin synthesis in flowers and fruits, indicating that a regulatory system based on the cooperation of MYB, bHLH and WD40 proteins that control floral and fruit pigmentation is common to many dicot species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NINJA connects the co-repressor TOPLESS to jasmonate signalling

              Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes1–5. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. Upon JA-Ile perception, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated6,7. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL)8 and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel INteractor of JAZ (NINJA). NINJA acts as a transcriptional repressor of which the activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress- and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.
                Bookmark

                Author and article information

                Journal
                Breed Sci
                Breed. Sci
                Breeding Science
                Japanese Society of Breeding
                1344-7610
                1347-3735
                January 2018
                24 February 2018
                : 68
                : 1
                : 88-98
                Affiliations
                Institute of Vegetable and Floriculture Science, NARO , 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
                Author notes
                [* ]Corresponding author (e-mail: kattu@ 123456affrc.go.jp )

                Communicated by Ryutaro Aida

                Article
                68_17114
                10.1270/jsbbs.17114
                5903982
                29681751
                806a0069-be6e-41e3-abd8-ea1bc43cbf94
                Copyright © 2018 by JAPANESE SOCIETY OF BREEDING

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 September 2017
                : 07 December 2017
                Categories
                Review

                Animal agriculture
                chimeric repressor,cres-t,floral trait,promoter,transcription factor
                Animal agriculture
                chimeric repressor, cres-t, floral trait, promoter, transcription factor

                Comments

                Comment on this article