0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluoridated silver nanocomposites for caries management: an in-vitro assessment of the cytological and antibacterial profiles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Silver nanoparticles (AgNPs) have antibacterial properties with potential applications in managing dental caries. Functionalization with fluoride may further enhance AgNPs’ antibacterial efficacy. This study evaluated the impact of fluoridated AgNPs coated with various surface moieties on their safety profile and antibacterial effects against cariogenic bacteria as a potential anti-cariogenic treatment.

          Methods

          AgNP synthesis followed citrate and gallic acid reduction methods with polyethylene glycol (PEG) and polyvinylpyrrolidone coating. Functionalizing AgNPs with sodium fluoride (NaF) proceeded. Testing the safety of synthesized compounds was done on human gingival fibroblasts and oral epithelial cells. Meanwhile, minimum inhibitory concentration (MIC) determination against Streptococcus mutans was executed to verify antibacterial activity.

          Results

          Gallic-reduced AgNPs revealed higher yielding capacity than citrate-AgNPs. Cytologically, PEGylation reinforced citrate-AgNPs stability and improved IC50 range up to ∼ 4.2 × 10 16 µg/mL and 64.3 µg/mL on fibroblastic and epithelial lineages. PEGylated AgNPs counteracted the cytotoxicity of free NaF with antagonistic combinational effect of NaF@PEG gallic-AgNPs on gingival fibroblasts. Microbiologically, AgNPs recorded an enhanced antimicrobial activity of ∼ 5.3 ± 2.3 µg/mL averaged MIC against Streptococcus mutans. Furthermore, fluoridation of PEG gallic-AgNPs depicted an additive antimicrobial propensity.

          Conclusions

          This dual action nanoplatform successfully integrates fluoride and silver components, reducing fluoride concentrations to safety range while maximizing silver’s antibacterial properties. Engineered NaF@PEGylated nanosilver formulation represents promising anti-cariogenic strategy that optimizes therapeutic efficacy while maintaining biological safety.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12903-025-05691-2.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Nanosilver as a new generation of nanoproduct in biomedical applications.

          Nanosilver (NS), comprising silver nanoparticles, is attracting interest for a range of biomedical applications owing to its potent antibacterial activity. It has recently been demonstrated that NS has useful anti-inflammatory effects and improves wound healing, which could be exploited in developing better dressings for wounds and burns. The key to its broad-acting and potent antibacterial activity is the multifaceted mechanism by which NS acts on microbes. This is utilized in antibacterial coatings on medical devices to reduce nosocomial infection rates. Many new synthesis methods have emerged and are being evaluated for NS production for medical applications. NS toxicity is also critically discussed to reflect on potential concerns before widespread application in the medical field. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release

            Background Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size- and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. Methods BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and γH2AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). Results The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no γH2AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4–7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any cytotoxicity, thus implying that intracellular Ag release was responsible for the toxicity. Conclusions This study shows that small AgNPs (10 nm) are cytotoxic for human lung cells and that the toxicity observed is associated with the rate of intracellular Ag release, a ‘Trojan horse’ effect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments

              Biofilms are microbial communities embedded within an extracellular matrix, forming a highly organized structure that causes many human infections. Dental caries (tooth decay) is a polymicrobial biofilm disease driven by the diet and microbiota-matrix interactions that occur on a solid surface. Sugars fuel the emergence of pathogens, the assembly of the matrix, and the acidification of the biofilm microenvironment, promoting ecological changes and concerted multispecies efforts that are conducive to acid damage of the mineralized tooth tissue. Here, we discuss recent advances in the role of the biofilm matrix and interactions between opportunistic pathogens and commensals in the pathogenesis of dental caries. In addition, we highlight the importance of matrix-producing organisms in fostering a pathogenic habitat where interspecies competition and synergies occur to drive the disease process, which could have implications to other infections associated with polymicrobial biofilms.
                Bookmark

                Author and article information

                Contributors
                marwa.morsy@alexu.edu.eg
                nour.ammar@alexu.edu.eg
                Journal
                BMC Oral Health
                BMC Oral Health
                BMC Oral Health
                BioMed Central (London )
                1472-6831
                9 March 2025
                9 March 2025
                2025
                : 25
                : 363
                Affiliations
                [1 ]Department of Oral Pathology, Faculty of Dentistry, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, 21521 Egypt
                [2 ]Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, 21521 Egypt
                [3 ]Department of Pathology, Faculty of Medicine, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, 21521 Egypt
                [4 ]Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, 21521 Egypt
                [5 ]Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, 21521 Egypt
                Author information
                https://orcid.org/0000-0002-4781-4293
                http://orcid.org/0000-0002-7654-2493
                Article
                5691
                10.1186/s12903-025-05691-2
                11892278
                40059140
                801aa014-756a-42ff-8228-31ae6b32d58c
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 January 2025
                : 19 February 2025
                Funding
                Funded by: Alexandria University
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2025

                Dentistry
                cytotoxicity,gallic acid,minimum inhibitory concentration,nano silver,polyethylene glycol,streptococcus mutans

                Comments

                Comment on this article