6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Superconductivity and strong correlations in moiré flat bands

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature

          Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport at a micrometer scale for a wide range of carrier concentrations. The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Topological orders and edge excitations in fractional quantum Hall states

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              van der Waals Heterostructures with High Accuracy Rotational Alignment

              We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.
                Bookmark

                Author and article information

                Journal
                Nature Physics
                Nat. Phys.
                Springer Science and Business Media LLC
                1745-2473
                1745-2481
                May 19 2020
                Article
                10.1038/s41567-020-0906-9
                798b81e8-5159-471b-9def-578c53ce9721
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article