12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eliminating Meningococcal Epidemics From the African Meningitis Belt: The Case for Advanced Prevention and Control Using Next-Generation Meningococcal Conjugate Vaccines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The introduction and rollout of a meningococcal serogroup A conjugate vaccine, MenAfriVac, in the African meningitis belt has eliminated serogroup A meningococcal infections for >300 million Africans. However, serogroup C, W, and X meningococci continue to circulate and have been responsible for focal epidemics in meningitis belt countries. Affordable multivalent meningococcal conjugate vaccines are being developed to prevent these non-A epidemics. This article describes the current epidemiologic situation and status of vaccine development and highlights questions to be addressed to most efficiently use these new vaccines.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Manson Lecture. Meningococcal meningitis in Africa.

          This review covers the history of meningococcal meningitis in Africa since epidemics of the infection were first described around 100 years ago. It is possible that an epidemic strain of the meningococcus was introduced into West Africa from the Sudan by pilgrims returning from the Haj around the turn of the century. Since 1905 major epidemics of meningococcal meningitis have occurred in countries of the Sahel and sub-Sahel every few years, culminating in a massive epidemic in which nearly 200,000 cases were reported in 1996. Attempts to control epidemic meningococcal meningitis in Africa by vaccination with meningococcal polysaccharide vaccines have met with only modest success because epidemics can progress with great rapidity and vaccination is often started too late. This situation should be improved as a result of a recent initiative, the International Coordinating Group (ICG), which is contributing to better surveillance in countries at risk and ensuring that vaccine is available when needed. However, in the medium term, the best prospect for the control of meningococcal meningitis in Africa lies in the recent development of polysaccharide-protein conjugate vaccines which, unlike polysaccharide vaccines, are immunogenic in the very young, induce immunological memory and are likely to give long-lasting protection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serogroup A meningococcal conjugate vaccination in Burkina Faso: analysis of national surveillance data.

            An affordable, highly immunogenic Neisseria meningitidis serogroup A meningococcal conjugate vaccine (PsA-TT) was licensed for use in sub-Saharan Africa in 2009. In 2010, Burkina Faso became the first country to implement a national prevention campaign, vaccinating 11·4 million people aged 1-29 years. We analysed national surveillance data around PsA-TT introduction to investigate the early effect of the vaccine on meningitis incidence and epidemics. We examined national population-based meningitis surveillance data from Burkina Faso using two sources, one with cases and deaths aggregated at the district level from 1997 to 2011, and the other enhanced with results of cerebrospinal fluid examination and laboratory testing from 2007 to 2011. We compared mortality rates and incidence of suspected meningitis, probable meningococcal meningitis by age, and serogroup-specific meningococcal disease before and during the first year after PsA-TT implementation. We assessed the risk of meningitis disease and death between years. During the 14 year period before PsA-TT introduction, Burkina Faso had 148 603 cases of suspected meningitis with 17 965 deaths, and 174 district-level epidemics. After vaccine introduction, there was a 71% decline in risk of meningitis (hazard ratio 0·29, 95% CI 0·28-0·30, p<0·0001) and a 64% decline in risk of fatal meningitis (0·36, 0·33-0·40, p<0·0001). We identified a statistically significant decline in risk of probable meningococcal meningitis across the age group targeted for vaccination (62%, cumulative incidence ratio [CIR] 0·38, 95% CI 0·31-0·45, p<0·0001), and among children aged less than 1 year (54%, 0·46, 0·24-0·86, p=0·02) and people aged 30 years and older (55%, 0·45, 0·22-0·91, p=0·003) who were ineligible for vaccination. No cases of serogroup A meningococcal meningitis occurred among vaccinated individuals, and epidemics were eliminated. The incidence of laboratory-confirmed serogroup A N meningitidis dropped significantly to 0·01 per 100 000 individuals per year, representing a 99·8% reduction in the risk of meningococcal A meningitis (CIR 0·002, 95% CI 0·0004-0·02, p<0·0001). Early evidence suggests the conjugate vaccine has substantially reduced the rate of meningitis in people in the target age group, and in the general population because of high coverage and herd immunity. These data suggest that fully implementing the PsA-TT vaccine could end epidemic meningitis of serogroup A in sub-Saharan Africa. None. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Meningococcal Meningitis Surveillance in the African Meningitis Belt, 2004–2013

              Background.  An enhanced meningitis surveillance network was established across the meningitis belt of sub-Saharan Africa in 2003 to rapidly collect, disseminate, and use district weekly data on meningitis incidence. Following 10 years’ experience with enhanced surveillance that included the introduction of a group A meningococcal conjugate vaccine, PsA-TT (MenAfriVac), in 2010, we analyzed the data on meningitis incidence and case fatality from countries reporting to the network. Methods.  After de-duplication and reconciliation, data were extracted from the surveillance bulletins and the central database held by the World Health Organization Inter-country Support Team in Burkina Faso for countries reporting consistently from 2004 through 2013 (Benin, Burkina Faso, Chad, Democratic Republic of Congo, Ghana, Côte d'Ivoire, Mali, Niger, Nigeria, Togo). Results.  The 10 study countries reported 341 562 suspected and confirmed cases over the 10-year study period, with a marked peak in 2009 due to a large epidemic of group A Neisseria meningitidis (NmA) meningitis. Case fatality was lowest (5.9%) during this year. A mean of 71 and 67 districts annually crossed the alert and epidemic thresholds, respectively. The incidence rate of NmA meningitis fell >10-fold, from 0.27 per 100 000 in 2004–2010 to 0.02 per 100 000 in 2011–2013 (P < .0001). Conclusions.  In addition to supporting timely outbreak response, the enhanced meningitis surveillance system provides a global overview of the epidemiology of meningitis in the region, despite limitations in data quality and completeness. This study confirms a dramatic fall in NmA incidence after the introduction of PsA-TT.
                Bookmark

                Author and article information

                Journal
                J Infect Dis
                J. Infect. Dis
                jid
                The Journal of Infectious Diseases
                Oxford University Press (US )
                0022-1899
                1537-6613
                01 December 2019
                31 October 2019
                31 October 2019
                : 220
                : Suppl 4 , MenAfriNet: A Network Supporting Case-Based Meningitis Surveillance and Vaccine Evaluation in the Meningitis Belt of Africa
                : S274-S278
                Affiliations
                [1 ] Center for Vaccine Innovation and Access, PATH
                [2 ] Bill & Melinda Gates Foundation , Seattle, Washington
                [3 ] Angela Hwang Consulting , Albany, California
                [4 ] Technical Services, Serum Institute of India Pvt Ltd , Pune, India
                [5 ] Immunization, Vaccines, and Biologicals, World Health Organization , Geneva, Switzerland
                Author notes
                Correspondence: Mark R. Alderson, Center for Vaccine Innovation and Access, PATH, Seattle, WA, 98121 ( malderson@ 123456path.org ).
                Author information
                http://orcid.org/0000-0002-0697-6149
                Article
                jiz297
                10.1093/infdis/jiz297
                6822963
                31671447
                75486809-1d19-4010-879d-b957068ac327
                © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 5
                Funding
                Funded by: Bill and Melinda Gates Foundation 10.13039/100000865
                Award ID: OPP1112245
                Categories
                Supplement Articles

                Infectious disease & Microbiology
                meningitis belt,multivalent meningococcal vaccines,epidemic prevention

                Comments

                Comment on this article