66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spinal muscular atrophy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 ( SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life.

          Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic severity going from high mortality within the first year for SMA type 1 to no mortality for the chronic and later onset forms.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Spinal muscular atrophy.

          Spinal muscular atrophy is an autosomal recessive neurodegenerative disease characterised by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalised weakness. It is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation. Although no medical treatment is available, investigations have elucidated possible mechanisms underlying the molecular pathogenesis of the disease. Treatment strategies have been developed to use the unique genomic structure of the SMN1 gene region. Several candidate treatment agents have been identified and are in various stages of development. These and other advances in medical technology have changed the standard of care for patients with spinal muscular atrophy. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, therapeutic development, and evidence from clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple roles of HDAC inhibition in neurodegenerative conditions.

            Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histones and other proteins and in regulating fundamental cellular activities such as transcription. A wide range of brain disorders are associated with imbalances in protein acetylation levels and transcriptional dysfunctions. Treatment with various HDAC inhibitors can correct these deficiencies and has emerged as a promising new strategy for therapeutic intervention in neurodegenerative disease. Here, we review and discuss intriguing recent developments in the use of HDAC inhibitors to combat neurodegenerative conditions in cellular and disease models. HDAC inhibitors have neuroprotective, neurotrophic and anti-inflammatory properties; improvements in neurological performance, learning/memory and other disease phenotypes are frequently seen in these models. We discuss the targets and mechanisms underlying these effects of HDAC inhibition and comment on the potential for some HDAC inhibitors to prove clinically effective in the treatment of neurodegenerative disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The survival motor neuron protein in spinal muscular atrophy.

              The 38 kDa survival motor neuron (SMN) protein is encoded by two ubiquitously expressed genes: telomeric SMN (SMN(T)) and centromeric SMN (SMN(C)). Mutations in SMN(T), but not SMN(C), cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gems. Using a panel of anti-SMN antibodies, we demonstrate that the SMN protein is expressed from both the SMN(T) and SMN(C) genes. Western blot analysis of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients. Immunocytochemical analysis of SMA patient fibroblasts indicates a significant reduction in the number of gems in type I SMA patients and a correlation of the number of gems with clinical severity. This correlation to phenotype using primary fibroblasts may serve as a useful diagnostic tool in an easily accessible tissue. SMN is expressed at high levels in brain, kidney and liver, moderate levels in skeletal and cardiac muscle, and low levels in fibroblasts and lymphocytes. In SMA patients, the SMN level was moderately reduced in muscle and lymphoblasts. In contrast, SMN was expressed at high levels in spinal cord from normals and non-SMA disease controls, but was reduced 100-fold in spinal cord from type I patients. The marked reduction of SMN in type I SMA spinal cords is consistent with the features of this motor neuron disease. We suggest that disruption of SMN(T) in type I patients results in loss of SMN from motor neurons, resulting in the degeneration of these neurons.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central
                1750-1172
                2011
                2 November 2011
                : 6
                : 71
                Affiliations
                [1 ]Department of Neurosciences, Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, P.za S. Onofrio, 4, Rome (00165), Italy
                [2 ]Dept of Neurology, Unit of Pediatric Neurology, Catholic University, Largo F. Vito 1, Rome (00168), Italy
                [3 ]Laboratory of Cytogenetics and Molecular Biology, Institute of Medical Genetics, Catholic University, Largo F. Vito 1, Rome (00168), Italy
                Article
                1750-1172-6-71
                10.1186/1750-1172-6-71
                3231874
                22047105
                6f38512e-8084-4c66-9bbe-b0d7abc9cb37
                Copyright ©2011 D'Amico et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 March 2011
                : 2 November 2011
                Categories
                Review

                Infectious disease & Microbiology
                smn2,proximal sma,motor neurons disease names and synonyms: spinal muscular atrophy 5q linked,proximal spinal muscular atrophy,smn1

                Comments

                Comment on this article