15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spinal muscular atrophy

      ,
      The Lancet
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal muscular atrophy is an autosomal recessive neurodegenerative disease characterised by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalised weakness. It is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation. Although no medical treatment is available, investigations have elucidated possible mechanisms underlying the molecular pathogenesis of the disease. Treatment strategies have been developed to use the unique genomic structure of the SMN1 gene region. Several candidate treatment agents have been identified and are in various stages of development. These and other advances in medical technology have changed the standard of care for patients with spinal muscular atrophy. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, therapeutic development, and evidence from clinical trials.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification and characterization of a spinal muscular atrophy-determining gene

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The survival motor neuron protein in spinal muscular atrophy.

            The 38 kDa survival motor neuron (SMN) protein is encoded by two ubiquitously expressed genes: telomeric SMN (SMN(T)) and centromeric SMN (SMN(C)). Mutations in SMN(T), but not SMN(C), cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gems. Using a panel of anti-SMN antibodies, we demonstrate that the SMN protein is expressed from both the SMN(T) and SMN(C) genes. Western blot analysis of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients. Immunocytochemical analysis of SMA patient fibroblasts indicates a significant reduction in the number of gems in type I SMA patients and a correlation of the number of gems with clinical severity. This correlation to phenotype using primary fibroblasts may serve as a useful diagnostic tool in an easily accessible tissue. SMN is expressed at high levels in brain, kidney and liver, moderate levels in skeletal and cardiac muscle, and low levels in fibroblasts and lymphocytes. In SMA patients, the SMN level was moderately reduced in muscle and lymphoblasts. In contrast, SMN was expressed at high levels in spinal cord from normals and non-SMA disease controls, but was reduced 100-fold in spinal cord from type I patients. The marked reduction of SMN in type I SMA spinal cords is consistent with the features of this motor neuron disease. We suggest that disruption of SMN(T) in type I patients results in loss of SMN from motor neurons, resulting in the degeneration of these neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding

              Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of α motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron development. Using antisense morpholinos to reduce Smn levels throughout the entire embryo, we found motor axon–specific pathfinding defects. Reduction of Smn in individual motoneurons revealed that smn is acting cell autonomously. These results show for the first time, in vivo, that Smn functions in motor axon development and suggest that these early developmental defects may lead to subsequent motoneuron loss.
                Bookmark

                Author and article information

                Journal
                The Lancet
                The Lancet
                Elsevier BV
                01406736
                June 2008
                June 2008
                : 371
                : 9630
                : 2120-2133
                Article
                10.1016/S0140-6736(08)60921-6
                18572081
                0342064d-b18a-4a07-b171-244c4e9df7a9
                © 2008

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article