81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extent and importance of endogenous viral elements have been extensively described in animals but are much less well understood in plants. Here we describe a new genus of Caulimoviridae called ‘Florendovirus’, members of which have colonized the genomes of a large diversity of flowering plants, sometimes at very high copy numbers (>0.5% total genome content). The genome invasion of Oryza is dated to over 1.8 million years ago (MYA) but phylogeographic evidence points to an even older age of 20–34 MYA for this virus group. Some appear to have had a bipartite genome organization, a unique characteristic among viral retroelements. In Vitis vinifera, 9% of the endogenous florendovirus loci are located within introns and therefore may influence host gene expression. The frequent colocation of endogenous florendovirus loci with TA simple sequence repeats, which are associated with chromosome fragility, suggests sequence capture during repair of double-stranded DNA breaks.

          Abstract

          Endogenous viral elements have been extensively described in animals but their significance in plants is less well understood. Here, Geering et al. describe a new group of endogenous pararetroviruses, called florendoviruses, which have colonized the genomes of many important crop species.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Horizontal gene transfer in eukaryotic evolution.

          Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.

            A key element to a successful Markov chain Monte Carlo (MCMC) inference is the programming and run performance of the Markov chain. However, the explicit use of quality assessments of the MCMC simulations-convergence diagnostics-in phylogenetics is still uncommon. Here, we present a simple tool that uses the output from MCMC simulations and visualizes a number of properties of primary interest in a Bayesian phylogenetic analysis, such as convergence rates of posterior split probabilities and branch lengths. Graphical exploration of the output from phylogenetic MCMC simulations gives intuitive and often crucial information on the success and reliability of the analysis. The tool presented here complements convergence diagnostics already available in other software packages primarily designed for other applications of MCMC. Importantly, the common practice of using trace-plots of a single parameter or summary statistic, such as the likelihood score of sampled trees, can be misleading for assessing the success of a phylogenetic MCMC simulation. The program is available as source under the GNU General Public License and as a web application at http://ceb.scs.fsu.edu/awty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An algorithm for progressive multiple alignment of sequences with insertions.

              Dynamic programming algorithms guarantee to find the optimal alignment between two sequences. For more than a few sequences, exact algorithms become computationally impractical, and progressive algorithms iterating pairwise alignments are widely used. These heuristic methods have a serious drawback because pairwise algorithms do not differentiate insertions from deletions and end up penalizing single insertion events multiple times. Such an unrealistically high penalty for insertions typically results in overmatching of sequences and an underestimation of the number of insertion events. We describe a modification of the traditional alignment algorithm that can distinguish insertion from deletion and avoid repeated penalization of insertions and illustrate this method with a pair hidden Markov model that uses an evolutionary scoring function. In comparison with a traditional progressive alignment method, our algorithm infers a greater number of insertion events and creates gaps that are phylogenetically consistent but spatially less concentrated. Our results suggest that some insertion/deletion "hot spots" may actually be artifacts of traditional alignment algorithms.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                10 November 2014
                : 5
                : 5269
                Affiliations
                [1 ]Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , GPO Box 267, Brisbane, Queensland 4001, Australia
                [2 ]INRA, UR1164 URGI, INRA de Versailles-Grignon, Route de Saint-Cyr , Versailles 78026, France
                [3 ]Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona , Tucson, Arizona 85721, USA
                [4 ]International Rice Research Institute, Genetic Resource Center , Los Baños, Laguna, The Philippines
                [5 ]Department of Ecology and Evolutionary Biology, University of Arizona , Tucson, Arizona 85721, USA
                [6 ]Istituto di Genomica Applicata, Parco Scientifico e Tecnologico di Udine Luigi Danieli , Via J Linussio 51, 33100 Udine, Italy
                [7 ]Research and Innovation Centre, Fondazione Edmund Mach , Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy
                [8 ]CIRAD UMR AGAP, Station de Neufchâteau, Sainte-Marie , 97130 Capesterre Belle-Eau, Guadeloupe, France
                Author notes
                [*]

                These authors contributed equally to this work

                Article
                ncomms6269
                10.1038/ncomms6269
                4241990
                25381880
                6b3e223d-94f4-4d6d-85e2-3e9b1c60ea4f
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 July 2014
                : 15 September 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article