13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study on the Lateral Carrier Diffusion and Source-Drain Series Resistance in Self-Aligned Top-Gate Coplanar InGaZnO Thin-Film Transistors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the lateral distribution of the equilibrium carrier concentration ( n 0) along the channel and the effects of channel length ( L) on the source-drain series resistance ( R ext) in the top-gate self-aligned (TG-SA) coplanar structure amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The lateral distribution of n 0 across the channel was extracted using the paired gate-to-source voltage ( V GS)-based transmission line method and the temperature-dependent transfer characteristics obtained from the TFTs with different Ls. n 0 abruptly decreased with an increase in the distance from the channel edge near the source/drain junctions; however, much smaller gradient of n 0 was observed in the region near the middle of the channel. The effect of L on the R ext in the TG-SA coplanar a-IGZO TFT was investigated by applying the drain current-conductance method to the TFTs with various Ls. The increase of R ext was clearly observed with an increase in L especially at low V GSs, which was possibly attributed to the enhanced carrier diffusion near the source/drain junctions due to the larger gradient of the carrier concentration in the longer channel devices. Because the lateral carrier diffusion and the relatively high R ext are the critical issues in the TG-SA coplanar structure-based oxide TFTs, the results in this work are expected to be useful in further improving the electrical performance and uniformity of the TG-SA coplanar structure oxide TFTs.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.

          Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxide semiconductor thin-film transistors: a review of recent advances.

            Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Material characteristics and applications of transparent amorphous oxide semiconductors

                Bookmark

                Author and article information

                Contributors
                hyuckin@cau.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 April 2019
                29 April 2019
                2019
                : 9
                : 6588
                Affiliations
                [1 ]ISNI 0000 0001 0789 9563, GRID grid.254224.7, School of Electrical and Electronics Engineering, , Chung-Ang University, ; 84 Heukseok-ro, Dongjak-gu, Seoul Korea
                [2 ]ISNI 0000 0001 0696 9566, GRID grid.464630.3, Research and Development Center, LG Display, E2 Block LG Science Park, ; 30, Magokjungang 10-ro, Gangseo-gu, Seoul Korea
                Article
                43186
                10.1038/s41598-019-43186-7
                6488651
                31036883
                695d0ba8-ca59-4d4c-8b07-993184ddd5b2
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 November 2018
                : 16 April 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: 2017R1A2A2A14001213
                Award ID: 2017R1A2A2A14001213
                Award ID: 2017R1A2A2A14001213
                Award ID: 2017R1A2A2A14001213
                Award ID: 2017R1A2A2A14001213
                Award ID: 2017R1A2A2A14001213
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                electrical and electronic engineering,electronic devices
                Uncategorized
                electrical and electronic engineering, electronic devices

                Comments

                Comment on this article