104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Cell Host & Microbe
      Cell Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.

          Highlights

          ► Domain signature modeling identifies 66 putative Plasmodium eukaryotic protein kinases ► The complement of protein kinases is largely conserved between Plasmodium species ► 23 protein kinase genes are redundant for P. berghei asexual erythrocytic development in mice ► 13 mutants reveal essential kinase gene functions in mosquito transmission

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Chemical genetics of Plasmodium falciparum

          Malaria caused by Plasmodium falciparum is a catastrophic disease worldwide (880,000 deaths yearly). Vaccine development has proved difficult and resistance has emerged for most antimalarials. In order to discover new antimalarial chemotypes, we have employed a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library, many of which exhibited potent in vitro activity against drug resistant strains, and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in multiple organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Overall, our findings provide the scientific community with new starting points for malaria drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches.

            Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito.

              Malaria is transmitted from vertebrate host to mosquito vector by mature sexual blood-living stages called gametocytes. Within seconds of ingestion into the mosquito bloodmeal, gametocytes undergo gametogenesis. Induction requires the simultaneous exposure to at least two stimuli in vitro: a drop in bloodmeal temperature to 5 degrees C below that of the vertebrate host, and a rise in pH from 7.4 to 8.0-8.2. In vivo the mosquito bloodmeal has a pH of between 7.5 and 7.6. It is thought that in vivo the second inducer is an unknown mosquito-derived gametocyte-activating factor. Here we show that this factor is xanthurenic acid. We also show that low concentrations of xanthurenic acid can act together with pH to induce gametogenesis in vitro. Structurally related compounds are at least ninefold less effective at inducing gametogenesis in vitro. In Drosophila mutants with lesions in the kynurenine pathway of tryptophan metabolism (of which xanthurenic acid is a side product), no alternative active compound was detected in crude insect homogenates. These data could form the basis of the rational development of new methods of interrupting the transmission of malaria using drugs or new refractory mosquito genotypes to block parasite gametogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell Host Microbe
                Cell Host Microbe
                Cell Host & Microbe
                Cell Press
                1931-3128
                1934-6069
                21 October 2010
                21 October 2010
                : 8
                : 4
                : 377-387
                Affiliations
                [1 ]Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK
                [2 ]Division of Cell & Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
                [3 ]The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
                [4 ]Computational Bioscience Research Center, Chemical Life Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
                Author notes
                []Corresponding author rita.tewari@ 123456nottingham.ac.uk
                [∗∗ ]Corresponding author oliver.billker@ 123456sanger.ac.uk
                Article
                CHOM491
                10.1016/j.chom.2010.09.006
                2977076
                20951971
                677aa366-d51c-4444-9856-b8e500978eb2
                © 2010 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 25 June 2010
                : 2 August 2010
                : 13 September 2010
                Categories
                Resource

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article