5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zearalenone (ZEA), an estrogenic mycotoxin, is mainly produced by Fusarium fungi. In this study, Bacillus licheniformis CK1 isolated from soil with the capability of degrading ZEA was evaluated for its efficacy in reducing the adverse effects of ZEA in piglets. The gilts were fed one of the following three diets for 14 days: a basic diet for the control group; the basic diet supplemented with ZEA-contaminated basic diet for the treatment 1 (T1) group; and the basic diet supplemented with fermented ZEA-contaminated basic diet by CK1 for the treatment 2 (T2) group. The actual ZEA contents (analyzed) were 0, 1.20 ± 0.11, 0.47 ± 0.22 mg/kg for the control, T1, and T2 diets, respectively. The results showed that the T1 group had significantly increased the size of vulva and the relative weight of reproductive organs compared to the control group at the end of the trial. The T1 group significantly decreased the concentration of the luteinizing hormone (LH) compared with the control and T2 groups. Expression of ERβ was significantly up-regulated in the T2 group compared with the control. In addition, expression of ERβ was not different between the control and the T1 group. In summary, our results suggest that Bacillus licheniformis CK1 could detoxify ZEA in feed and reduce the adverse effects of ZEA in the gilts.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

          The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 > zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 > genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Nutrient Requirements of Swine : Eleventh Revised Edition

            (2012)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia.

              During an 8-year period, 17 316 samples of feed and feed raw materials from all over the world were analysed for contamination with aflatoxins, ochratoxin A, zearalenone, deoxynivalenol and fumonisins. Overall, 72% of the samples tested positive for at least one mycotoxin and 38% were found to be co-contaminated. Mycotoxin concentrations were generally low and the majority of the samples were compliant with the most stringent EU guidance values or maximum levels for mycotoxins in feed. However, in their present state these regulations do not address co-contamination and associated risks. Long-term trends are difficult to establish as strong yearly variations were observed regarding mycotoxin prevalence and contamination levels. In some cases unusual weather conditions can be linked with high observed mycotoxin loads. An exception to this rule is South-East Asia, where a steady increase of aflatoxin prevalence has been observed. The percentage of aflatoxin-positive samples in this region rose from 32% in 2005 to 71% in 2011. © 2013 Society of Chemical Industry.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                17 October 2016
                October 2016
                : 8
                : 10
                : 300
                Affiliations
                [1 ]College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China; guanhua1220@ 123456163.com (G.F.); mamafeiabc@ 123456163.com (J.M.); 18710354317@ 123456163.com (L.W.); yangx0629@ 123456163.com (X.Y.)
                [2 ]Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; jrliu@ 123456ntu.edu.tw
                [3 ]Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
                Author notes
                [* ]Correspondence: xin.zhao@ 123456mcgill.ca ; Tel.: +86-29-8708-0899
                Article
                toxins-08-00300
                10.3390/toxins8100300
                5086660
                27763510
                66eabec2-ef7f-4ed0-9c89-adec374d4b08
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 September 2016
                : 11 October 2016
                Categories
                Article

                Molecular medicine
                bacillus licheniformis ck1,zearalenone (zea),serum hormones,estrogen receptor (er),post-weaning female piglets

                Comments

                Comment on this article