17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular and pathological heterogeneity of primary tauopathies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer’s disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotoxic reactive astrocytes are induced by activated microglia

          A reactive astrocyte subtype termed A1 is induced after injury or disease of the central nervous system and subsequently promotes the death of neurons and oligodendrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuropathological stageing of Alzheimer-related changes

            Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

              Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.
                Bookmark

                Author and article information

                Contributors
                daheunc@bcm.edu
                roemer.shanu@mayo.edu
                petrucelli.leonard@mayo.edu
                dickson.dennis@mayo.edu
                Journal
                Mol Neurodegener
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central (London )
                1750-1326
                23 August 2021
                23 August 2021
                2021
                : 16
                : 57
                Affiliations
                [1 ]GRID grid.417467.7, ISNI 0000 0004 0443 9942, Department of Neuroscience, , Mayo Clinic, ; 32224 Jacksonville, FL USA
                [2 ]GRID grid.39382.33, ISNI 0000 0001 2160 926X, Department of Molecular and Human Genetics, , Baylor College of Medicine, ; 77030 Houston, TX USA
                [3 ]GRID grid.416975.8, ISNI 0000 0001 2200 2638, Jan and Dan Duncan Neurological Research Institute, , Texas Children’s Hospital, ; 77030 Houston, TX USA
                Article
                476
                10.1186/s13024-021-00476-x
                8381569
                34425874
                668e1c79-6b06-433f-97c0-8425ea00493d
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 January 2020
                : 22 July 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: P50-AG016574
                Award ID: UH3-NS104095
                Award ID: U54 NS100693
                Award ID: R01 AG062348
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Neurosciences
                animal models,astrocytes,cryo-em,mapt,microglia,oligodendroglia,tau,tauopathy,transcriptomics
                Neurosciences
                animal models, astrocytes, cryo-em, mapt, microglia, oligodendroglia, tau, tauopathy, transcriptomics

                Comments

                Comment on this article