21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the impact of active M dwarf stars on the atmospheric equilibrium and surface conditions of a habitable zone Earth-like planet is key to assessing M dwarf planet habitability. Previous modeling of the impact of electromagnetic (EM) radiation and protons from a single large flare on an Earth-like atmosphere indicated that significant and long-term reductions in ozone were possible, but the atmosphere recovered. However, these stars more realistically exhibit frequent flaring with a distribution of different total energies and cadences. Here, we use a coupled 1D photochemical and radiative-convective model to investigate the effects of repeated flaring on the photochemistry and surface UV of an Earth-like planet unprotected by an intrinsic magnetic field. As input, we use time-resolved flare spectra obtained for the dM3 star AD Leonis, combined with flare occurrence frequencies and total energies (typically 10 30.5 to 10 34 erg) from the 4-year Kepler light curve for the dM4 flare star GJ1243, with varied proton event impact frequency. Our model results show that repeated EM-only flares have little effect on the ozone column depth but that multiple proton events can rapidly destroy the ozone column. Combining the realistic flare and proton event frequencies with nominal CME/SEP geometries, we find the ozone column for an Earth-like planet can be depleted by 94% in 10 years, with a downward trend that makes recovery unlikely and suggests further destruction. For more extreme stellar inputs, O 3 depletion allows a constant ∼0.1–1 W m −2 of UVC at the planet's surface, which is likely detrimental to organic complexity. Our results suggest that active M dwarf hosts may comprehensively destroy ozone shields and subject the surface of magnetically unprotected Earth-like planets to long-term radiation that can damage complex organic structures. However, this does not preclude habitability, as a safe haven for life could still exist below an ocean surface.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars.

          Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Frequency distributions and correlations of solar X-ray flare parameters

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

              Abstract Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze—Archean Earth—Exoplanets—Spectra—Biosignatures—Planetary habitability. Astrobiology 16, 873–899.
                Bookmark

                Author and article information

                Journal
                Astrobiology
                Astrobiology
                ast
                Astrobiology
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1531-1074
                1557-8070
                01 January 2019
                29 December 2018
                29 December 2018
                : 19
                : 1
                : 64-86
                Affiliations
                [ 1 ]Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA.
                [ 2 ]NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA.
                [ 3 ]Astrobiology Program, University of Washington, Seattle, Washington, USA.
                [ 4 ]Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México.
                [ 5 ]Department of Astronomy, University of Washington, Seattle, Washington, USA.
                [ 6 ]Department of Physics and Astronomy, Western Washington University, Bellingham, Washington, USA.
                Author notes
                [*]Address correspondence to: Matt A. Tilley, University of Washington, Johnson Hall Rm-070, Box 351310, Seattle, WA 98195-1310 mtilley@ 123456uw.edu
                Article
                10.1089/ast.2017.1794
                10.1089/ast.2017.1794
                6340793
                30070900
                64342cd1-5a7f-40db-8b33-0518e933c010
                © Matt A. Tilley et al., 2018; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 21 November 2017
                : 07 June 2018
                Page count
                Figures: 14, Tables: 3, Equations: 9, References: 84, Pages: 23
                Categories
                Research Articles

                m dwarf,flares,stellar activity,ahbitable zone,planetary atmospheres,magnetic field.

                Comments

                Comment on this article