0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Supervised Bidirectional Long Short-Term Memory Network for Data-Driven Dynamic Soft Sensor Modeling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          LSTM: A Search Space Odyssey

          Several variants of the long short-term memory (LSTM) architecture for recurrent neural networks have been proposed since its inception in 1995. In recent years, these networks have become the state-of-the-art models for a variety of machine learning problems. This has led to a renewed interest in understanding the role and utility of various computational components of typical LSTM variants. In this paper, we present the first large-scale analysis of eight LSTM variants on three representative tasks: speech recognition, handwriting recognition, and polyphonic music modeling. The hyperparameters of all LSTM variants for each task were optimized separately using random search, and their importance was assessed using the powerful functional ANalysis Of VAriance framework. In total, we summarize the results of 5400 experimental runs ( ≈ 15 years of CPU time), which makes our study the largest of its kind on LSTM networks. Our results show that none of the variants can improve upon the standard LSTM architecture significantly, and demonstrate the forget gate and the output activation function to be its most critical components. We further observe that the studied hyperparameters are virtually independent and derive guidelines for their efficient adjustment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review on Methods to Fix Number of Hidden Neurons in Neural Networks

            This paper reviews methods to fix a number of hidden neurons in neural networks for the past 20 years. And it also proposes a new method to fix the hidden neurons in Elman networks for wind speed prediction in renewable energy systems. The random selection of a number of hidden neurons might cause either overfitting or underfitting problems. This paper proposes the solution of these problems. To fix hidden neurons, 101 various criteria are tested based on the statistical errors. The results show that proposed model improves the accuracy and minimal error. The perfect design of the neural network based on the selection criteria is substantiated using convergence theorem. To verify the effectiveness of the model, simulations were conducted on real-time wind data. The experimental results show that with minimum errors the proposed approach can be used for wind speed prediction. The survey has been made for the fixation of hidden neurons in neural networks. The proposed model is simple, with minimal error, and efficient for fixation of hidden neurons in Elman networks.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network

                Bookmark

                Author and article information

                Contributors
                Journal
                IEEE Transactions on Instrumentation and Measurement
                IEEE Trans. Instrum. Meas.
                Institute of Electrical and Electronics Engineers (IEEE)
                0018-9456
                1557-9662
                2022
                2022
                : 71
                : 1-13
                Affiliations
                [1 ]Department of Advanced Design and Systems Engineering, City University of Hong Kong, Hong Kong
                [2 ]School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
                [3 ]Department of Advanced Design and Systems Engineering and the School of Data Science, City University of Hong Kong, Hong Kong
                Article
                10.1109/TIM.2022.3152856
                62fb64ac-9e0d-4001-9ec4-424af994feb3
                © 2022

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Comments

                Comment on this article