4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Batrachochytrium dendrobatidis infection in amphibians predates first known epizootic in Costa Rica

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging infectious diseases are a growing threat to biodiversity worldwide. Outbreaks of the infectious disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis ( Bd), are implicated in the decline and extinction of numerous amphibian species. In Costa Rica, a major decline event occurred in 1987, more than two decades before this pathogen was discovered. The loss of many species in Costa Rica is assumed to be due to Bd-epizootics, but there are few studies that provide data from amphibians in the time leading up to the proposed epizootics. In this study, we provide new data on Bd infection rates of amphibians collected throughout Costa Rica, in the decades prior to the epizootics. We used a quantitative PCR assay to test for Bd presence in 1016 anuran museum specimens collected throughout Costa Rica. The earliest specimen that tested positive for Bd was collected in 1964. Across all time periods, we found an overall infection rate (defined as the proportion of Bd-positive individuals) of 4%. The number of infected individuals remained relatively low across all species tested and the range of Bd-positive specimens was shown to be geographically constrained up until the 1980s; when epizootics are hypothesized to have occurred. After that time, infection rate increased three-fold, and the range of specimens tested positive for Bd increased, with Bd-positive specimens collected across the entire country. Our results suggest that Bd dynamics in Costa Rica are more complicated than previously thought. The discovery of Bd’s presence in the country preceding massive declines leads to a number of different hypotheses: 1) Bd invaded Costa Rica earlier than previously known, and spread more slowly than previously reported; 2) Bd invaded multiple times and faded out; 3) an endemic Bd lineage existed; 4) an earlier Bd lineage evolved into the current Bd lineage or hybridized with an invasive lineage; or 5) an earlier Bd lineage went extinct and a new invasion event occurred causing epizootics. To help visualize areas where future studies should take place, we provide a Bd habitat suitability model trained with local data. Studies that provide information on genetic lineages of Bd are needed to determine the most plausible spatial-temporal, host-pathogen dynamics that could best explain the epizootics resulting in amphibian declines in Costa Rica and throughout Central America.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America.

          Epidermal changes caused by a chytridiomycete fungus (Chytridiomycota; Chytridiales) were found in sick and dead adult anurans collected from montane rain forests in Queensland (Australia) and Panama during mass mortality events associated with significant population declines. We also have found this new disease associated with morbidity and mortality in wild and captive anurans from additional locations in Australia and Central America. This is the first report of parasitism of a vertebrate by a member of the phylum Chytridiomycota. Experimental data support the conclusion that cutaneous chytridiomycosis is a fatal disease of anurans, and we hypothesize that it is the proximate cause of these recent amphibian declines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

            Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community.

              Pathogens rarely cause extinctions of host species, and there are few examples of a pathogen changing species richness and diversity of an ecological community by causing local extinctions across a wide range of species. We report the link between the rapid appearance of a pathogenic chytrid fungus Batrachochytrium dendrobatidis in an amphibian community at El Copé, Panama, and subsequent mass mortality and loss of amphibian biodiversity across eight families of frogs and salamanders. We describe an outbreak of chytridiomycosis in Panama and argue that this infectious disease has played an important role in amphibian population declines. The high virulence and large number of potential hosts of this emerging infectious disease threaten global amphibian diversity.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 December 2019
                2019
                : 14
                : 12
                : e0208969
                Affiliations
                [1 ] Department of Microbiology and Molecular genetics, University of California, Davis, United States of America
                [2 ] Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
                [3 ] Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica
                [4 ] Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
                [5 ] Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
                [6 ] Department of Biology, San Francisco State University, San Francisco, California, United States of America
                [7 ] Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, United States of America
                Vanderbilt University School of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-9973-1951
                http://orcid.org/0000-0002-3061-2185
                http://orcid.org/0000-0002-9682-1190
                Article
                PONE-D-18-32345
                10.1371/journal.pone.0208969
                6903748
                31821326
                6186fe25-1598-4dd1-8785-105cd334234c
                © 2019 De León et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 November 2018
                : 18 October 2019
                Page count
                Figures: 3, Tables: 2, Pages: 14
                Funding
                Funded by: National Science Foundation (US)
                Award ID: 1633948
                Award Recipient :
                This research was partially funded by the National Institutes of Health (NIH) grant number 5R25GM050078 and the National Science Foundation (NSF1633948; awarded to Vredenburg). AGR is currently supported by a postdoctoral fellowship from Dirección General de Asuntos del Personal Académico (DGAPA) at the Instituto de Biología, Universidad Nacional Autónoma de México. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Zoology
                Animal Diseases
                Epizootics
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amphibians
                People and places
                Geographical locations
                North America
                Central America
                Costa Rica
                Research and Analysis Methods
                Research Facilities
                Museum Collections
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Amphibians
                Frogs
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Statistical Methods
                Regression Analysis
                Linear Regression Analysis
                Physical Sciences
                Mathematics
                Statistics
                Statistical Methods
                Regression Analysis
                Linear Regression Analysis
                Custom metadata
                All pathogen PCR assay results are available from the AmphibiaWeb amphibian disease portal database. REFERENCE: De Leon, M. 2017 "Costa Rica (UCR) museum specimens" AmphibiaWeb: Amphibian Disease Portal. < https://n2t.net/ark:/21547/Auf2>.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article