2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Habitat disturbance influences the skin microbiome of a rediscovered neotropical-montane frog

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The skin microbiome serves as a first line defense against pathogens in vertebrates. In amphibians, it has the potential to protect against the chytrid fungus Batrachochytrium dendrobatis ( Bd), a likely agent of amphibian declines. Alteration of the microbiome associated with unfavorable environmental changes produced by anthropogenic activities may make the host more susceptible to pathogens. Some amphibian species that were thought to be “extinct” have been rediscovered years after population declines in the late 1980s probably due to evolved Bd-resistance and are now threatened by anthropogenic land-use changes. Understanding the effects of habitat disturbance on the host skin microbiome is relevant for understanding the health of these species, along with its susceptibility to pathogens such as Bd. Here, we investigate the influence of habitat alteration on the skin bacterial communities as well as specifically the putative Bd-inhibitory bacterial communities of the montane frog Lithobates vibicarius. This species, after years of not being observed, was rediscovered in small populations inhabiting undisturbed and disturbed landscapes, and with continuous presence of Bd.

          Results

          We found that cutaneous bacterial communities of tadpoles and adults differed between undisturbed and disturbed habitats. The adults from disturbed habitats exhibited greater community dispersion than those from undisturbed habitats. We observed a higher richness of putative Bd-inhibitory bacterial strains in adults from disturbed habitats than in those from undisturbed habitats, as well as a greater number of these potential protective bacteria with a high relative abundance.

          Conclusions

          Our findings support the microbial “Anna Karenina principle”, in which disturbance is hypothesized to cause greater microbial dispersion in communities, a so-called dysbiosis, which is a response of animal microbiomes to stress factors that decrease the ability of the host or its microbiome to regulate community composition. On the positive side, the high richness and relative abundance of putative Bd-inhibitory bacteria may indicate the development of a defense mechanism that enhances Bd-protection, attributed to a co-occurrence of more than 30-years of host and pathogen in these disturbed habitats. Our results provide important insight into the influence of human-modified landscapes on the skin microbiome and health implications of Bd-survivor species.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

          Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth’s biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Gut microbiome-host interactions in health and disease

            The gut microbiome is the term given to describe the vast collection of symbiotic microorganisms in the human gastrointestinal system and their collective interacting genomes. Recent studies have suggested that the gut microbiome performs numerous important biochemical functions for the host, and disorders of the microbiome are associated with many and diverse human disease processes. Systems biology approaches based on next generation 'omics' technologies are now able to describe the gut microbiome at a detailed genetic and functional (transcriptomic, proteomic and metabolic) level, providing new insights into the importance of the gut microbiome in human health, and they are able to map microbiome variability between species, individuals and populations. This has established the importance of the gut microbiome in the disease pathogenesis for numerous systemic disease states, such as obesity and cardiovascular disease, and in intestinal conditions, such as inflammatory bowel disease. Thus, understanding microbiome activity is essential to the development of future personalized strategies of healthcare, as well as potentially providing new targets for drug development. Here, we review recent metagenomic and metabonomic approaches that have enabled advances in understanding gut microbiome activity in relation to human health, and gut microbial modulation for the treatment of disease. We also describe possible avenues of research in this rapidly growing field with respect to future personalized healthcare strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The amphibian skin-associated microbiome across species, space and life history stages.

              Skin-associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high-throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian-associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance. © 2013 John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                randall87@gmail.com
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                22 September 2020
                22 September 2020
                2020
                : 20
                : 292
                Affiliations
                [1 ]GRID grid.6582.9, ISNI 0000 0004 1936 9748, Institute of Evolutionary Ecology and Conservation Genomics, , University of Ulm, ; Albert-Einstein Allee 11, 89069 Ulm, Germany
                [2 ]GRID grid.11899.38, ISNI 0000 0004 1937 0722, Laboratory of Comparative Wildlife Pathology, School of Veterinary Medicine and Animal Sciences, , University of São Paulo, ; Av. Orlando Marques de Paiva 87, São Paulo, Brazil
                [3 ]GRID grid.412889.e, ISNI 0000 0004 1937 0706, Laboratory of Experimental and Comparative Pathology (LAPECOM), Biology School, , University of Costa Rica, ; San José, Costa Rica
                Author information
                http://orcid.org/0000-0003-2832-5168
                Article
                1979
                10.1186/s12866-020-01979-1
                7509932
                32962670
                2d232f89-5b15-4919-885c-0c7624ce9af7
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 April 2020
                : 15 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100007463, Rufford Foundation;
                Funded by: FundRef http://dx.doi.org/10.13039/100013470, Auckland Zoo;
                Funded by: Cleveland Zoological Society
                Funded by: FundRef http://dx.doi.org/10.13039/501100006473, Ministerio de Ciencia Tecnología y Telecomunicaciones;
                Funded by: FundRef http://dx.doi.org/10.13039/501100008977, Universität Ulm;
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Microbiology & Virology
                skin bacterial diversity,16s rrna amplicon sequencing,land-use change,anthropogenic disturbance,batrachochytrium dendrobatidis (bd),amphibian health implications and conservation

                Comments

                Comment on this article