12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ESSD Commentary on Dysphagia Management During COVID Pandemia

      editorial

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the World Health Organization declared the COVID-19 pandemic a Global Public Health Emergency, experts in swallowing are seeking guidance on service delivery and clinical procedures. The European Society for Swallowing Disorders provides considerations to support experts in swallowing disorders in clinical practice. During the COVID-19 pandemic, assessment and treatment of patients with oropharyngeal dysphagia should be provided, while at the same time balancing risk of oropharyngeal complications with that of infection of patients and healthcare professionals involved in their management. Elective, non-urgent assessment may be temporarily postponed and patients are triaged to decide whether dysphagia assessment is necessary; instrumental assessment of swallowing is performed only if processing of the instruments can be guaranteed and clinical assessment has not provided enough diagnostic information for treatment prescription. Assessment and management of oropharyngeal dysphagia is a high-risk situation as it must be considered an aerosol-generating procedure. Personal protective equipment (PPE) should be used. Telepractice is encouraged and compensatory treatments are recommended.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus outbreak of global health concern

          In December, 2019, Wuhan, Hubei province, China, became the centre of an outbreak of pneumonia of unknown cause, which raised intense attention not only within China but internationally. Chinese health authorities did an immediate investigation to characterise and control the disease, including isolation of people suspected to have the disease, close monitoring of contacts, epidemiological and clinical data collection from patients, and development of diagnostic and treatment procedures. By Jan 7, 2020, Chinese scientists had isolated a novel coronavirus (CoV) from patients in Wuhan. The genetic sequence of the 2019 novel coronavirus (2019-nCoV) enabled the rapid development of point-of-care real-time RT-PCR diagnostic tests specific for 2019-nCoV (based on full genome sequence data on the Global Initiative on Sharing All Influenza Data [GISAID] platform). Cases of 2019-nCoV are no longer limited to Wuhan. Nine exported cases of 2019-nCoV infection have been reported in Thailand, Japan, Korea, the USA, Vietnam, and Singapore to date, and further dissemination through air travel is likely.1, 2, 3, 4, 5 As of Jan 23, 2020, confirmed cases were consecutively reported in 32 provinces, municipalities, and special administrative regions in China, including Hong Kong, Macau, and Taiwan. 3 These cases detected outside Wuhan, together with the detection of infection in at least one household cluster—reported by Jasper Fuk-Woo Chan and colleagues 6 in The Lancet—and the recently documented infections in health-care workers caring for patients with 2019-nCoV indicate human-to-human transmission and thus the risk of much wider spread of the disease. As of Jan 23, 2020, a total of 835 cases with laboratory-confirmed 2019-nCoV infection have been detected in China, of whom 25 have died and 93% remain in hospital (figure ). 3 Figure Timeline of early stages of 2019-nCoV outbreak 2019-nCoV=2019 novel coronavirus. In The Lancet, Chaolin Huang and colleagues 7 report clinical features of the first 41 patients admitted to the designated hospital in Wuhan who were confirmed to be infected with 2019-nCoV by Jan 2, 2020. The study findings provide first-hand data about severity of the emerging 2019-nCoV infection. Symptoms resulting from 2019-nCoV infection at the prodromal phase, including fever, dry cough, and malaise, are non-specific. Unlike human coronavirus infections, upper respiratory symptoms are notably infrequent. Intestinal presentations observed with SARS also appear to be uncommon, although two of six cases reported by Chan and colleagues had diarrhoea. 6 Common laboratory findings on admission to hospital include lymphopenia and bilateral ground-glass opacity or consolidation in chest CT scans. These clinical presentations confounded early detection of infected cases, especially against a background of ongoing influenza and circulation of other respiratory viruses. Exposure history to the Huanan Seafood Wholesale market served as an important clue at the early stage, yet its value has decreased as more secondary and tertiary cases have appeared. Of the 41 patients in this cohort, 22 (55%) developed severe dyspnoea and 13 (32%) required admission to an intensive care unit, and six died. 7 Hence, the case-fatality proportion in this cohort is approximately 14·6%, and the overall case fatality proportion appears to be closer to 3% (table ). However, both of these estimates should be treated with great caution because not all patients have concluded their illness (ie, recovered or died) and the true number of infections and full disease spectrum are unknown. Importantly, in emerging viral infection outbreaks the case-fatality ratio is often overestimated in the early stages because case detection is highly biased towards the more severe cases. As further data on the spectrum of mild or asymptomatic infection becomes available, one case of which was documented by Chan and colleagues, 6 the case-fatality ratio is likely to decrease. Nevertheless, the 1918 influenza pandemic is estimated to have had a case-fatality ratio of less than 5% 13 but had an enormous impact due to widespread transmission, so there is no room for complacency. Table Characteristics of patients who have been infected with 2019-nCoV, MERS-CoV, and SARS-CoV7, 8, 10, 11, 12 2019-nCoV * MERS-CoV SARS-CoV Demographic Date December, 2019 June, 2012 November, 2002 Location of first detection Wuhan, China Jeddah, Saudi Arabia Guangdong, China Age, years (range) 49 (21–76) 56 (14–94) 39·9 (1–91) Male:female sex ratio 2·7:1 3·3:1 1:1·25 Confirmed cases 835† 2494 8096 Mortality 25† (2·9%) 858 (37%) 744 (10%) Health-care workers 16‡ 9·8% 23·1% Symptoms Fever 40 (98%) 98% 99–100% Dry cough 31 (76%) 47% 29–75% Dyspnoea 22 (55%) 72% 40–42% Diarrhoea 1 (3%) 26% 20–25% Sore throat 0 21% 13–25% Ventilatory support 9·8% 80% 14–20% Data are n, age (range), or n (%) unless otherwise stated. 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. * Demographics and symptoms for 2019-nCoV infection are based on data from the first 41 patients reported by Chaolin Huang and colleagues (admitted before Jan 2, 2020). 8 Case numbers and mortalities are updated up to Jan 21, 2020) as disclosed by the Chinese Health Commission. † Data as of Jan 23, 2020. ‡ Data as of Jan 21, 2020. 9 As an RNA virus, 2019-nCoV still has the inherent feature of a high mutation rate, although like other coronaviruses the mutation rate might be somewhat lower than other RNA viruses because of its genome-encoded exonuclease. This aspect provides the possibility for this newly introduced zoonotic viral pathogen to adapt to become more efficiently transmitted from person to person and possibly become more virulent. Two previous coronavirus outbreaks had been reported in the 21st century. The clinical features of 2019-nCoV, in comparison with SARS-CoV and Middle East respiratory syndrome (MERS)-CoV, are summarised in the table. The ongoing 2019-nCoV outbreak has undoubtedly caused the memories of the SARS-CoV outbreak starting 17 years ago to resurface in many people. In November, 2002, clusters of pneumonia of unknown cause were reported in Guangdong province, China, now known as the SARS-CoV outbreak. The number of cases of SARS increased substantially in the next year in China and later spread globally, 14 infecting at least 8096 people and causing 774 deaths. 12 The international spread of SARS-CoV in 2003 was attributed to its strong transmission ability under specific circumstances and the insufficient preparedness and implementation of infection control practices. Chinese public health and scientific capabilities have been greatly transformed since 2003. An efficient system is ready for monitoring and responding to infectious disease outbreaks and the 2019-nCoV pneumonia has been quickly added to the Notifiable Communicable Disease List and given the highest priority by Chinese health authorities. The increasing number of cases and widening geographical spread of the disease raise grave concerns about the future trajectory of the outbreak, especially with the Chinese Lunar New Year quickly approaching. Under normal circumstances, an estimated 3 billion trips would be made in the Spring Festival travel rush this year, with 15 million trips happening in Wuhan. The virus might further spread to other places during this festival period and cause epidemics, especially if it has acquired the ability to efficiently transmit from person to person. Consequently, the 2019-nCoV outbreak has led to implementation of extraordinary public health measures to reduce further spread of the virus within China and elsewhere. Although WHO has not recommended any international travelling restrictions so far, 15 the local government in Wuhan announced on Jan 23, 2020, the suspension of public transportation, with closure of airports, railway stations, and highways in the city, to prevent further disease transmission. 16 Further efforts in travel restriction might follow. Active surveillance for new cases and close monitoring of their contacts are being implemented. To improve detection efficiency, front-line clinics, apart from local centres for disease control and prevention, should be armed with validated point-of-care diagnostic kits. Rapid information disclosure is a top priority for disease control and prevention. A daily press release system has been established in China to ensure effective and efficient disclosure of epidemic information. Education campaigns should be launched to promote precautions for travellers, including frequent hand-washing, cough etiquette, and use of personal protection equipment (eg, masks) when visiting public places. Also, the general public should be motivated to report fever and other risk factors for coronavirus infection, including travel history to affected area and close contacts with confirmed or suspected cases. Considering that substantial numbers of patients with SARS and MERS were infected in health-care settings, precautions need to be taken to prevent nosocomial spread of the virus. Unfortunately, 16 health-care workers, some of whom were working in the same ward, have been confirmed to be infected with 2019-nCoV to date, although the routes of transmission and the possible role of so-called super-spreaders remain to be clarified. 9 Epidemiological studies need to be done to assess risk factors for infection in health-care personnel and quantify potential subclinical or asymptomatic infections. Notably, the transmission of SARS-CoV was eventually halted by public health measures including elimination of nosocomial infections. We need to be wary of the current outbreak turning into a sustained epidemic or even a pandemic. The availability of the virus' genetic sequence and initial data on the epidemiology and clinical consequences of the 2019-nCoV infections are only the first steps to understanding the threat posed by this pathogen. Many important questions remain unanswered, including its origin, extent, and duration of transmission in humans, ability to infect other animal hosts, and the spectrum and pathogenesis of human infections. Characterising viral isolates from successive generations of human infections will be key to updating diagnostics and assessing viral evolution. Beyond supportive care, 17 no specific coronavirus antivirals or vaccines of proven efficacy in humans exist, although clinical trials of both are ongoing for MERS-CoV and one controlled trial of ritonavir-boosted lopinavir monotherapy has been launched for 2019-nCoV (ChiCTR2000029308). Future animal model and clinical studies should focus on assessing the effectiveness and safety of promising antiviral drugs, monoclonal and polyclonal neutralising antibody products, and therapeutics directed against immunopathologic host responses. We have to be aware of the challenge and concerns brought by 2019-nCoV to our community. Every effort should be given to understand and control the disease, and the time to act is now. This online publication has been corrected. The corrected version first appeared at thelancet.com on January 29, 2020
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

            To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient

              This study documents results of SARS-CoV-2 polymerase chain reaction (PCR) testing of environmental surfaces and personal protective equipment surrounding 3 COVID-19 patients in isolation rooms in a Singapore hospital.
                Bookmark

                Author and article information

                Contributors
                president@essd.org
                Journal
                Dysphagia
                Dysphagia
                Dysphagia
                Springer US (New York )
                0179-051X
                1432-0460
                27 October 2020
                : 1-4
                Affiliations
                [1 ]GRID grid.4708.b, ISNI 0000 0004 1757 2822, Phoniatric Unit, Department of Biomedical and Clinical Science “L. Sacco”, , University of Milan, ; Milan, Italy
                [2 ]GRID grid.412966.e, ISNI 0000 0004 0480 1382, Department of Otorhinolaryngology, Head and Neck Surgery, , Maastricht University Medical Center, ; Maastricht, The Netherlands
                [3 ]GRID grid.412966.e, ISNI 0000 0004 0480 1382, GROW-School for Oncology and Developmental Biology, , Maastricht University Medical Center,, ; Maastricht, The Netherlands
                [4 ]GRID grid.7080.f, Gastrointestinal Physiology Laboratory. Hospital de Mataró, , Universitat Autònoma de Barcelona, ; Mataró, Spain
                [5 ]GRID grid.452371.6, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ; Barcelona, Spain
                [6 ]Dysphagiezentrum Wien, Vienna, Austria
                [7 ]SRH Hochschule für Gesundheit, University of Applied Health Sciences, Campus Karlsruhe Benzstr. 5, Karlsruhe, Germany
                [8 ]GRID grid.16149.3b, ISNI 0000 0004 0551 4246, Department of Neurology, , University Hospital Münster, ; Albert-Schweitzer-Campus 1, Munster, Germany
                [9 ]GRID grid.414614.2, Audiology Phoniatric Service - ENT Department, , Infermi Hospital of Rimini - AUSL Romagna, ; Rimini, Italy
                [10 ]GI Sciences, School of Medical Sciences, Clinical Sciences Building, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
                [11 ]GRID grid.11047.33, ISNI 0000 0004 0576 5395, Department of Speech Language Therapy, School of Rehabilitation Sciences, , University of Patras, ; Patras, Greece
                [12 ]GRID grid.22937.3d, ISNI 0000 0000 9259 8492, Unified Patient Program, Teaching Center, , Medical University of Vienna, ; Vienna, Austria
                [13 ]GRID grid.5510.1, ISNI 0000 0004 1936 8921, Department Special Needs Education, , University of Oslo, ; Oslo, Norway
                [14 ]GRID grid.8217.c, ISNI 0000 0004 1936 9705, Department of Clinical Speech and Language Studies, Trinity College Dublin, , The University of Dublin, ; Dublin 2, Ireland
                [15 ]GRID grid.10400.35, ISNI 0000 0001 2108 3034, Rouen University Hospital, , University of Rouen, ; 3830 Normandy, EA France
                [16 ]GRID grid.5596.f, ISNI 0000 0001 0668 7884, Dept of Neurosciences, ExpORL, Deglutology and University Hospital Leuven, , University of Leuven, ; Leuven, Belgium
                [17 ]GRID grid.5596.f, ISNI 0000 0001 0668 7884, Dept Gastroenterology (Neurogastroenterology and Motility), , University of Leuven, ; Leuven, Belgium
                Author information
                http://orcid.org/0000-0001-5675-7334
                Article
                10194
                10.1007/s00455-020-10194-z
                7592131
                33111204
                60dae1fb-91ba-4db5-8b15-95b4e785a1e5
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 3 June 2020
                : 23 September 2020
                Categories
                Comment

                Otolaryngology
                covid-19,dysphagia,assessment,personal protective equipment
                Otolaryngology
                covid-19, dysphagia, assessment, personal protective equipment

                Comments

                Comment on this article