2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Removal of Time–Concentration Data Points from Progress Curves Improves the Determination of Km: The Example of Paraoxonase 1

      , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several approaches for determining an enzyme’s kinetic parameter Km (Michaelis constant) from progress curves have been developed in recent decades. In the present article, we compare different approaches on a set of experimental measurements of lactonase activity of paraoxonase 1 (PON1): (1) a differential-equation-based Michaelis–Menten (MM) reaction model in the program Dynafit; (2) an integrated MM rate equation, based on an approximation of the Lambert W function, in the program GraphPad Prism; (3) various techniques based on initial rates; and (4) the novel program “iFIT”, based on a method that removes data points outside the area of maximum curvature from the progress curve, before analysis with the integrated MM rate equation. We concluded that the integrated MM rate equation alone does not determine kinetic parameters precisely enough; however, when coupled with a method that removes data points (e.g., iFIT), it is highly precise. The results of iFIT are comparable to the results of Dynafit and outperform those of the approach with initial rates or with fitting the entire progress curve in GraphPad Prism; however, iFIT is simpler to use and does not require inputting a reaction mechanism. Removing unnecessary points from progress curves and focusing on the area around the maximum curvature is highly advised for all researchers determining Km values from progress curves.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes.

          Members of the serum paraoxonase (PON) family have been identified in mammals and other vertebrates, and in invertebrates. PONs exhibit a wide range of physiologically important hydrolytic activities, including drug metabolism and detoxification of nerve agents. PON1 and PON3 reside on high-density lipoprotein (HDL, 'good cholesterol') and are involved in the prevention of atherosclerosis. We describe the first crystal structure of a PON family member, a variant of PON1 obtained by directed evolution, at a resolution of 2.2 A. PON1 is a six-bladed beta-propeller with a unique active site lid that is also involved in HDL binding. The three-dimensional structure and directed evolution studies permit a detailed description of PON1's active site and catalytic mechanism, which are reminiscent of secreted phospholipase A2, and of the routes by which PON family members diverged toward different substrate and reaction selectivities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase.

            P Kuzmic (1996)
            A computer program with the code name DYNAFIT was developed for fitting either the initial velocities or the time course of enzyme reactions to an arbitrary molecular mechanism represented symbolically by a set of chemical equations. Seven numerical tests and five graphical tests are applied to judge the goodness of fit. Experimental data on the inhibition of the dissociative dimeric proteinase from HIV were used in four test examples. A set of initial velocities was analyzed to see if a tight-binding inhibitor could bind to the HIV proteinase monomer. Three different sets of progress curves were analyzed (i) to determine the kinetic properties of an irreversible inhibitor, (ii) to investigate the dissociation and denaturation mechanism for the protease dimer, and (iii) to investigate the inhibition mechanism for a transient inhibitor. The program is available by anonymous ftp via uwmml.pharmacy.wisc.edu and on the World Wide Web via http://uwmml.pharmacy.wisc.edu.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1.

              The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1's active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1's promiscuity and evolutionary potential. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                February 2022
                February 15 2022
                : 27
                : 4
                : 1306
                Article
                10.3390/molecules27041306
                5ead1634-3984-4bd1-8864-3b03cc0007fa
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article