5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Fermented Radix puerariae Residue on Nutrient Digestibility and Reproductive Performance of Sows

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was conducted to investigate the effect of fermented Radix puerariae residue (FRPR) on reproductive performance, apparent total tract digestibility (ATTD) of nutrients, and fecal short-chain fatty acid (SCFA) contents of sows. A total of 36 landrace × large white multiparous sows were randomly arranged into three treatments, representing supplementation with 0, 2, and 4% FRPR to a corn-soybean meal and wheat bran-based diet during the whole gestation period. The results showed that dietary FRPR had no effects on litter size and the number of total alive piglets ( P > 0.05), and that the number of weaned piglets and weaning weight of litter were increased in sows with 4% FRPR treatment compared with control treatment ( P < 0.05). Dietary 4% FRPR significantly decreased constipation rate, improved the ATTD of dry matter and organics, and fecal contents of acetate, propionate, and total SCFAs ( P < 0.05). In the offspring piglets, serum concentrations of total protein, alkaline phosphatase, IgG, IL-10, and TGF-β were increased, but blood urea nitrogen content was decreased with 4% FRPR treatment ( P < 0.05). There were no significant differences in all determined indexes except for fecal acetic acid and total SCFAs between control and 2% FRPR treatment ( P > 0.05). These findings indicated that FRPR used in the diets of sows showed positive effects on fecal characteristics, utilization of nutrients, and reproductive performance. Maternal supplementation with 4% FRPR is recommended for improving immune responses, weaning litter size, and litter weight of offspring piglets, which provide useful information for the application of residues of R. puerariae.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

          A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice

            Antibiotics and dietary habits can affect the gut microbial community, thus influencing disease susceptibility. Although the effect of microbiota on the postnatal environment has been well documented, much less is known regarding the impact of gut microbiota at the embryonic stage. Here we show that maternal microbiota shapes the metabolic system of offspring in mice. During pregnancy, short-chain fatty acids produced by the maternal microbiota dictate the differentiation of neural, intestinal, and pancreatic cells through embryonic GPR41 and GPR43. This developmental process helps maintain postnatal energy homeostasis, as evidenced by the fact that offspring from germ-free mothers are highly susceptible to metabolic syndrome, even when reared under conventional conditions. Thus, our findings elaborate on a link between the maternal gut environment and the developmental origin of metabolic syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain–gut barriers

              The combination of Puerariae Lobatae Radix (PLR) and Chuanxiong Rhizoma (CXR) is commonly used to treat cerebrovascular diseases. This work aimed to clarify the mechanisms of their action in treating cerebral ischemic stroke from the perspective of gut microecology. The PLR and CXR combination effectively improved the neurological function, reduced the cerebral infarction and relieved the complications of cerebral ischemic stroke, including dyslipidemia, increased blood viscosity and thrombotic risk. Cerebral ischemic stroke triggered gut microbial disturbances by enriching pathogens and opportunistic microorganisms, including Bacteroides, Escherichia_Shigella, Haemophilus, Eubacterium_nodatum_group, Collinsella, Enterococcus, Proteus, Alistipes, Klebsiella, Shuttleworthia and Faecalibacterium. Cerebral ischemic stroke also increased the intestinal permeability, disrupted the gut barrier and caused intestinal microbial translocation. Occludin, claudin-5 and ZO-1 levels in the brain-gut barriers showed a high positive correlation. However, the combination remodeled the gut microecology by modulating endogenous bacteria whose effects may mitigate cerebral damage, such as Alloprevotella, Ruminococcaceae, Oscillospira, Lachnospiraceae_NK4B4_group, Akkermansia and Megasphaera, protected the brain-gut barriers by increasing claudin-5 and ZO-1 levels; and weakened the gut microbiota translocation by decreasing diamine oxidase, lipopolysaccharide and d-lactate. Although nimodipine effectively reduced the cerebral infarction, it did not relieve the gut microbiota dysbiosis and instead aggravated the gut barrier disruption and microbiota translocation. In conclusion, cerebral ischemic stroke caused gut microbiota dysbiosis, increased intestinal permeability, disrupted the gut barrier and triggered gut microbiota translocation. The PLR and CXR combination was an effective treatment for cerebral ischemic stroke that relieved the gut microbiota dysbiosis and brain-gut barriers disruption.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                30 August 2021
                2021
                : 8
                : 715713
                Affiliations
                [1] 1College of Animal Science and Technology, Hunan Agricultural University , Changsha, China
                [2] 2College of Animal Science, Jiangxi Agricultural University , Nanchang, China
                [3] 3Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China , Beijing, China
                Author notes

                Edited by: Mark Vickers, The University of Auckland, New Zealand

                Reviewed by: Tongxing Song, Huazhong Agricultural University, China; Yatian Yang, University of California, Davis, United States

                *Correspondence: Bi'e Tan bietan@ 123456hunau.edu.cn

                This article was submitted to Nutrition and Metabolism, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2021.715713
                8435608
                34527689
                5bb9a707-9d79-4eb9-8a63-eaa7e5b7a99f
                Copyright © 2021 Luo, Zhao, Zeng, Yin, Zeng, Li, He, Wang and Tan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 May 2021
                : 05 August 2021
                Page count
                Figures: 1, Tables: 5, Equations: 0, References: 44, Pages: 9, Words: 5730
                Categories
                Nutrition
                Original Research

                fermented radix puerariae residue,nutrient digestibility,reproductive performance,sows,offspring

                Comments

                Comment on this article