3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pueraria lobata Targeted Preparation Improves the Clinical Symptoms of Cervical Spondylosis by Regulating the Balance of Gut Microbiota

      research-article
      Computational and Mathematical Methods in Medicine
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nanotargeted preparations can enhance the safety and effectiveness of medication by altering the pharmacokinetic behavior of drugs in the human body, and Pueraria lobata is shown to be effective in the treatment of neck and back pain.

          Purpose

          This study prepared a nano-Pueraria targeted preparation, in order to analyze its effect on improving the clinical symptoms of cervical spondylosis by adjusting the balance of intestinal flora.

          Methods

          A total of 200 patients with cervical spondylosis admitted to the Affiliated Hospital of Nanjing University of Chinese Medicine were enrolled and divided into an observation group and a control group. The control group was given Tuina therapy, and the observation group was given nano-Pueraria targeted preparation + Tuina therapy. The clinical symptoms and intestinal microflora of the two groups were examined before intervention.

          Results

          It was found that the markedly effective of treatment efficacy of the observation group (98%) was higher than that of the control group (78%) after 15 days of intervention, and the clinical symptoms were obviously fewer than those of the control group. The distribution of gut microbiota showed that there were significant differences in the composition of gut microbiota between the two groups. Compared with the control group, the abundance of Firmicutes in the observation group was significantly higher, while the abundance of Bacteroidetes and Proteobacteria was significantly lower.

          Conclusion

          The targeted preparation of nano-Pueraria can improve the clinical symptoms of patients with cervical spondylosis by adjusting the balance of gut microbiota.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nano based drug delivery systems: recent developments and future prospects

          Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: A systematic review

            The intestinal microbiota plays an important role in development of the immune system and regulation of immune responses. This review summarizes the association between the intestinal microbiota and the development of allergic sensitization, eczema, and asthma in neonates and children. Overall, a greater relative abundance of Bacteroidaceae, Clostridiaceae, and Enterobacteriaceae and a lower relative abundance of Bifidobacteriaceae and Lactobacillaceae is associated with the development of allergic sensitization, eczema, or asthma. Reduced bacterial diversity can be associated with the development of allergic disease. The association between the composition of the intestinal microbiota and the development of allergic disease or asthma is less consistent in older children than in neonates, suggesting that early-life microbial exposure plays a more important role. Inconsistencies in the results reported from different studies might partly be explained by heterogeneity in design, study populations, diagnostic criteria, microbiota analysis methods, and reporting on different taxonomic levels. Larger studies that better account for antenatal and postnatal factors will further help determine specific microbial intestinal signatures associated with increased risk of allergy and asthma. This will enable the early identification of infants at high risk and facilitate novel strategies and interventions to prevent and treat these conditions, including modifying the intestinal microbiota early in life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases

              The number of bacterial cells living within the human body is approximately equal to, or greater than, the total number of human cells. This dynamic population of microorganisms, termed the human microbiota, resides mainly within the gastrointestinal tract. It is widely accepted that highly diverse and stable microbiota promote overall human health. Colonization of the gut with maladaptive and pathogenic microbiota, a state also known as dysbiosis, is associated with a variety of peripheral diseases ranging from type 2 diabetes mellitus to cardiovascular and inflammatory bowel disease. More recently, microbial dysbiosis has been associated with a number of brain pathologies, including autism spectrum disorder, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), suggesting a direct or indirect communication between intestinal bacteria and the central nervous system (CNS). In this review, we illustrate two pathways implicated in the crosstalk between gut microbiota and CNS involving 1) the vagus nerve and 2) transmission of signaling molecules through the circulatory system and across the blood-brain barrier (BBB). We summarize the available evidence of the specific changes in the intestinal microbiota, as well as microorganism-induced modifications to intestinal and BBB permeability, which have been linked to several neurodegenerative disorders including ALS, AD, and PD. Even though each of these diseases arises from unique pathogenetic mechanisms, all are characterized, at least in part, by chronic neuroinflammation. We provide an interpretation for the substantial evidence that healthy intestinal microbiota have the ability to positively regulate the neuroimmune responses in the CNS. Even though the evidence is mainly associative, it has been suggested that bacterial dysbiosis could contribute to an adverse neuroinflammatory state leading to increased risk of neurodegenerative diseases. Thus, developing strategies for regulating and maintaining healthy intestinal microbiota could be a valid approach for lowering individual risk and prevalence of neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                cmmm
                Computational and Mathematical Methods in Medicine
                Hindawi
                1748-670X
                1748-6718
                2022
                27 January 2022
                : 2022
                : 2136807
                Affiliations
                Acupuncture and Tuina Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu Province, China
                Author notes

                Academic Editor: Min Tang

                Author information
                https://orcid.org/0000-0002-4141-4782
                Article
                10.1155/2022/2136807
                8813225
                35126618
                7e211703-231c-4824-89ef-660ce33c0bd7
                Copyright © 2022 Yuhang Qin.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 November 2021
                : 10 December 2021
                : 16 December 2021
                Funding
                Funded by: Jiangsu Chinese medicine science and technology development plan project
                Award ID: MS2021006
                Categories
                Research Article

                Applied mathematics
                Applied mathematics

                Comments

                Comment on this article