1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haptoglobin is an early indicator of survival after radiation-induced severe injury and bone marrow transplantation in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hematopoietic stem cell transplantation (HSCT) is the main treatment for acute radiation sickness, especially after fatal radiation. The determination of HSCT for radiation patients is mainly based on radiation dose, hemogram and bone marrow injury severity. This study aims to explore a better biomarker of acute radiation injury from the perspective of systemic immune response.

          Methods

          C57BL/6J female mice were exposed to total body irradiation (TBI) and partial body irradiation (PBI). Changes in haptoglobin (Hp) level in plasma were shown at different doses and time points after the exposure and treatment with amifostine or bone marrow transplantation. Student’s t-test/two tailed test were used in two groups. To decide the Hp levels as a predictor of the radiation dose in TBI and PBI, multiple linear regression analysis were performed. The ability of biomarkers to identify two groups of different samples was determined by the receiver operating characteristic (ROC) curve. The results were expressed as mean ± standard deviation (SD). Significance was set at P value < 0.05, and P value < 0.01 was set as highly significant. Survival distribution was determined by log-rank test.

          Results

          In this study, we found that Hp was elevated dose-dependently in plasma in the early post-irradiation period and decreased on the second day, which can be used as a molecular indicator for early dose assessment. Moreover, we detected the second increase of Hp on the 3rd and 5th days after the lethal irradiation at 10 Gy, which was eliminated by amifostine, a radiation protection drug, while protected mice from death. Most importantly, bone marrow transplantation (BMT) on the 3rd and 5th day after 10 Gy radiation improved the 30-days survival rate, and effectively accelerated the regression of secondary increased Hp level.

          Conclusions

          Our study suggests that Hp can be used not only as an early molecule marker of radiation injury, but also as an important indicator of bone marrow transplantation therapy for radiation injury, bringing new scientific discoveries in the diagnosis and treatment of acute radiation injury from the perspective of systemic immunity.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13287-022-03162-x.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          The acute phase response.

          Adult mammals respond to tissue damage by implementing the acute phase response, which comprises a series of specific physiological reactions. This review outlines the principal cellular and molecular mechanisms that control initiation of the tissue response at the site of injury, the recruitment of the systemic defense mechanisms, the acute phase response of the liver and the resolution of the acute phase response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.

            DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research.

              Formation of γ-H2AX in response to DNA double stranded breaks (DSBs) provides the basis for a sensitive assay of DNA damage in human biopsies. The review focuses on the application of γ-H2AX-based methods to translational studies to monitor the clinical response to DNA targeted therapies such as some forms of chemotherapy, external beam radiotherapy, radionuclide therapy or combinations thereof. The escalating attention on radiation biodosimetry has also highlighted the potential of the assay including renewed efforts to assess the radiosensitivity of prospective radiotherapy patients. Finally the γ-H2AX response has been suggested as a basis for an in vivo imaging modality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                birm4th@163.com
                wangzhidong1977@126.com
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                6 September 2022
                6 September 2022
                2022
                : 13
                : 461
                Affiliations
                [1 ]GRID grid.506261.6, ISNI 0000 0001 0706 7839, Department of Radiobiology, Beijing Key Laboratory for Radiobiology, , Beijing Institute of Radiation Medicine, ; Beijing, 100850 China
                [2 ]GRID grid.284723.8, ISNI 0000 0000 8877 7471, Department of Radiotherapy, Nanfang Hospital, , Southern Medical University, ; Guangzhou, 510080 China
                [3 ]GRID grid.412017.1, ISNI 0000 0001 0266 8918, Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, , University of South China, ; Hengyang, 421001 Hunan China
                Author information
                http://orcid.org/0000-0003-0594-1638
                Article
                3162
                10.1186/s13287-022-03162-x
                9450283
                36068556
                57df324b-aac9-4e3b-bd9c-9e617c53353a
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 2 February 2022
                : 23 May 2022
                Funding
                Funded by: Major Project
                Award ID: BWS18J008
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Molecular medicine
                haptoglobin (hp),acute radiation syndrome (ars),bone marrow transplantation,biodosimeter

                Comments

                Comment on this article