7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives

      , , ,
      Environments
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The number of scientists and tourists visiting Antarctica is on the rise and, despite the management framework for environmental protection, some coastal areas, particularly in the Antarctic Peninsula region, are affected by plastic contamination. The few data available on the occurrence of microplastics (<5 mm) are difficult to compare, due to the different methodologies used in monitoring studies. However, indications are emerging to guide future research and to implement environmental protocols. In the surface and subsurface waters of the Southern Ocean, plastic debris >300 µm appears to be scarce and far less abundant than paint chips released from research vessels. Yet, near some coastal scientific stations, the fragmentation and degradation of larger plastic items, as well as microbeads and microfibers released into wastewater from personal care products and laundry, could potentially affect marine organisms. Some studies indicate that, through long-range atmospheric transport, plastic fibers produced on other continents can be deposited in Antarctica. Drifting plastic debris can also cross the Polar Front, with the potential to carry alien fouling organisms into the Southern Ocean. Sea ice dynamics appear to favor the uptake of microplastics by ice algae and Antarctic krill, the key species in the Antarctic marine food web. Euphausia superba apparently has the ability to fragment and expel ingested plastic particles at the nanoscale. However, most Antarctic organisms are endemic species, with unique ecophysiological adaptations to extreme environmental conditions and are likely highly sensitive to cumulative stresses caused by climate change, microplastics and other anthropogenic disturbances. Although there is limited evidence to date that micro- and nanoplastics have direct biological effects, our review aims at raising awareness of the problem and, in order to assess the real potential impact of microplastics in Antarctica, underlines the urgency to fill the methodological gaps for their detection in all environmental matrices, and to equip scientific stations and ships with adequate wastewater treatment plants to reduce the release of microfibers.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production, use, and fate of all plastics ever made

          We present the first ever global account of the production, use, and end-of-life fate of all plastics ever made by humankind.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accumulation and fragmentation of plastic debris in global environments.

            One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea

              Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world's oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N = 680) and visual survey transects of large plastic debris (N = 891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic 4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove <4.75 mm plastic particles from the ocean surface.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environments
                Environments
                MDPI AG
                2076-3298
                July 2022
                July 15 2022
                : 9
                : 7
                : 93
                Article
                10.3390/environments9070093
                53d01a27-6cc8-4d91-93e4-0abd60b5a16d
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article