0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Processes contributing to cloud dissipation and formation events on the North Slope of Alaska

      , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Clear-sky periods across the high latitudes have profound impacts on the surface energy budget and lower atmospheric stratification; however an understanding of the atmospheric processes leading to low-level cloud dissipation and formation events is limited. A method to identify clear periods at Utqiaġvik (formerly Barrow), Alaska, during a 5-year period (2014–2018) is developed. A suite of remote sensing and in situ measurements from the high-latitude observatory are analyzed; we focus on comparing and contrasting atmospheric properties during low-level (below 2 km) cloud dissipation and formation events to understand the processes controlling clear-sky periods. Vertical profiles of lidar backscatter suggest that aerosol presence across the lower atmosphere is relatively invariant during the periods bookending clear conditions, which suggests that a sparsity of aerosol is not frequently a cause for cloud dissipation on the North Slope of Alaska. Further, meteorological analysis indicates two active processes ongoing that appear to support the formation of low clouds after a clear-sky period: namely, horizontal advection, which was dominant in winter and early spring, and quiescent air mass modification, which was dominant in the summer. During summer, the dominant mode of cloud formation is a low cloud or fog layer developing near the surface. This low cloud formation is driven largely by air mass modification under relatively quiescent synoptic conditions. Near-surface aerosol particles concentrations changed by a factor of 2 around summer formation events. Thermodynamic adjustment and increased aerosol presence under quiescent atmospheric conditions are hypothesized as important mechanisms for fog formation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          The ERA5 Global Reanalysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Overview of Arctic Cloud and Radiation Characteristics

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle

                Bookmark

                Author and article information

                Contributors
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2021
                March 18 2021
                : 21
                : 5
                : 4149-4167
                Article
                10.5194/acp-21-4149-2021
                53bd055f-eb65-4e5b-8f07-54bdb183e79e
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article