6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of ATP Synthase c–Rings for Oxygenic Photosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The conversion of sunlight into useable cellular energy occurs via the proton–coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δ ψ), which drives the synthesis of ATP through the thylakoid F oF 1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane–embedded ion–binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H +/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c–ring stoichiometries, photosynthetic c–rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H +/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δ ψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c–ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H +/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          The ATP synthase--a splendid molecular machine.

          P Boyer (1997)
          An X-ray structure of the F1 portion of the mitochondrial ATP synthase shows asymmetry and differences in nucleotide binding of the catalytic beta subunits that support the binding change mechanism with an internal rotation of the gamma subunit. Other structural and mutational probes of the F1 and F0 portions of the ATP synthase are reviewed, together with kinetic and other evaluations of catalytic site occupancy and behavior during hydrolysis or synthesis of ATP. Subunit function as related to proton translocation and rotational catalysis is considered. Physical demonstrations of the gamma subunit rotation have been achieved. The findings have implications for other enzymatic catalyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological genomics of marine picocyanobacteria.

            Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45 degrees N to 40 degrees S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ATP synthase: the understood, the uncertain and the unknown.

              The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                30 January 2020
                2019
                : 10
                : 1778
                Affiliations
                [1] 1 Department of Energy Plant Research Laboratory, Michigan State University , East Lansing, MI, United States
                [2] 2 Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, MI, United States
                Author notes

                Edited by: Cornelia Spetea, University of Gothenburg, Sweden

                Reviewed by: Mark Aurel Schöttler, Max Planck Institute of Molecular Plant Physiology, Germany; Mikko Tikkanen, University of Turku, Finland

                *Correspondence: David M. Kramer, kramerd8@ 123456msu.edu

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01778
                7003800
                32082344
                538dc9c2-6a75-4fe6-99cb-b1fb03bb1f33
                Copyright © 2020 Davis and Kramer

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2019
                : 20 December 2019
                Page count
                Figures: 4, Tables: 0, Equations: 3, References: 112, Pages: 13, Words: 5904
                Funding
                Funded by: U.S. Department of Energy 10.13039/100000015
                Award ID: DE-FG02-91ER20021
                Categories
                Plant Science
                Hypothesis and Theory

                Plant science & Botany
                photosynthesis,adenosine triphosphate synthase,proton motive force,singlet oxygen,electron transfer,bioenergetics

                Comments

                Comment on this article