Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many approaches have been proposed, these typically focus on linear approaches like computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. For the timestep-specific scale, which has higher temporal precision, we find significant differences between schizophrenia patients and control subjects in their temporal step distance through our model’s latent space. We also find that window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than the standard tr-FC approach. Moreover, we find that for individuals with schizophrenia, our model’s context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-sensorimotor functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.
We introduce a powerful new temporal representation learning model for resting-state fMRI data that can find novel and interesting temporal motifs that relate brain activity to schizophrenia diagnosis. Our model uses factorizes out local (timestep-specific) and context (window-specific) information in a latent space. We find that the context embeddings are more linearly predictive of whether someone has a schizophrenia diagnosis, and the context embedding space significantly correlates with age and symptom severity. We verify that our model captures features that are complementary to but not the same as time-resolved functional connectivity features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.