8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NEAT1/miR-181c Regulates Osteopontin (OPN)-Mediated Synoviocyte Proliferation in Osteoarthritis : NEAT1/miR-181c REGULATES OPN-MEDIATED SYNOVIOCYTE PROLIFERATION

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is characterized by progressive destruction of articular cartilage, resulting in significant disability. Inflammatory cytokines commonly initiate the extreme changes in the synovium and cartilage microenvironment of the OA patients, subsequently resulting in cell dysfunctions, especially synoviocyte dysfunction. We revealed that the expression of osteopontin (OPN), which has been reported to regulate expression of various inflammatory factors associating with the pathogenesis of OA including matrix metalloprotease 13 (MMP13), interlukine-6 and 8 (IL-6 and IL-8), is significantly upregulated in OA tissues. In the present study, online tools were used to screen out the candidate miRNAs of OPN. Among the candidate miRNAs, miR-181c inhibited OPN mRNA expression the most strongly. Ectopic expression of miR-181c significantly repressed synoviocyte proliferation, as well as the levels of OPN, MMP13, IL-6, and IL-8. Further, the candidate lncRNAs of miR-181c were screened out by using DianaTools; among which NEAT1 showed to inversely regulate miR-181c. By performing Luciferase assays, we revealed that NEAT1 competed with OPN for miR-181c binding. After NEAT1 knockdown, MMP13, IL-6, and IL-8 expression was reduced; the synoviocyte proliferation was repressed, as well as OPN protein levels; the suppressive effect of NETA1 knockdown on synoviocyte proliferation and the indicated factors were partially reversed by miR-181c inhibition. In OA tissues, OPN mRNA, and NEAT1 expression was upregulated, whereas miR-181c expression was downregulated, indicating that targeting NEAT1 to rescue miR-181c expression so as to inhibit OPN expression and synoviocyte proliferation might be an efficient strategy for OA treatment. J. Cell. Biochem. 118: 3775-3784, 2017. © 2017 Wiley Periodicals, Inc.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review.

          Although osteoarthritis (OA) is considered a non-inflammatory condition, it is widely accepted that synovial inflammation is a feature of OA. However, the role of immune cells and their cytokines in OA is largely unknown. This narrative systematic review summarizes the knowledge of inflammatory properties, immune cells and their cytokines in synovial tissues (STs) of OA patients. Broad literature search in different databases was performed which resulted in 100 articles. Of 100 articles 33 solely investigated inflammation in OA ST with or without comparison with normal samples; the remaining primarily focussed on rheumatoid arthritis (RA) ST. Studies investigating different severity stages or cellular source of cytokines were sparse. OA ST displayed mild/moderate grade inflammation when investigated by means of haematoxylin and eosin (H&E) staining. Most frequently found cells types were macrophages, T cells and mast cells (MCs). Overall the number of cells was lower than in RA, although the number of MCs was as high as or sometimes even higher than in RA ST. Cytokines related to T cell or macrophage function were found in OA ST. Their expression was overall higher than in normal ST, but lower than in RA ST. Their cellular source remains largely unknown in OA ST. Inflammation is common in OA ST and characterized by immune cell infiltration and cytokine secretion. This inflammation seems quantitatively and qualitatively different from inflammation in RA. Further research is needed to clarify the role of inflammation, immune cells and their cytokines in the pathogenesis of OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aging-related inflammation in osteoarthritis.

            It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed "inflamm-aging." Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNFα). Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix-degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype (SASP). Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

              Background Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. Methodology/Principal Findings In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential “interactome” network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. Conclusions/Significance Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Biochemistry
                J. Cell. Biochem.
                Wiley
                07302312
                November 2017
                November 2017
                May 18 2017
                : 118
                : 11
                : 3775-3784
                Affiliations
                [1 ]Department of Emergency Medicine; The Second Xiangya Hospital; Central South University; Changsha Hunan China
                [2 ]Emergency Medicine and Difficult Diseases Institute; Central South University; Changsha Hunan China
                [3 ]Department of Orthopedics; The Second Xiangya Hospital; Central South University; Changsha Hunan China
                [4 ]Department of Neonatology; The Hunan Children's Hospital; Changsha Hunan China
                Article
                10.1002/jcb.26025
                28379604
                47fce47e-1dfc-4236-8765-501af3dae333
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article