32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Drug Repurposing for Viral Infectious Diseases: How Far Are We?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the recent advances in controlling some viral pathogens, most viral infections still lack specific treatment. Indeed, the need for effective therapeutic strategies to combat ‘old’, emergent, and re-emergent viruses is not paralleled by the approval of new antivirals. In the past years, drug repurposing combined with innovative approaches for drug validation, and with appropriate animal models, significantly contributed to the identification of new antiviral molecules and targets for therapeutic intervention. In this review, we describe the main strategies of drug repurposing in antiviral discovery, discuss the most promising candidates that could be repurposed to treat viral infections, and analyze the possible caveats of this trendy strategy of drug discovery.

          Highlights

          Repurposing existing drugs is an emerging strategy for expediting the approval of effective and safe therapeutics, such as for the treatment of orphan drug diseases.

          New indications for antiviral activity can be identified for molecules of different origins showing repurposing potential by acting against a previously known target or a new antiviral target.

          Innovative approaches for target validation (e.g., gene editing by CRISPR/Cas9) and new experimental models (e.g., organoids) allowed the identification of novel antiviral agents and the unraveling of molecular pathways underlying viral pathogenesis.

          Drug repurposing has successfully identified promising candidate drugs that can open new therapeutic avenues to counteract current viral pathogens and possible emerging viruses.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen.

          In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zika virus cell tropism in the developing human brain and inhibition by azithromycin.

            The rapid spread of Zika virus (ZIKV) and its association with abnormal brain development constitute a global health emergency. Congenital ZIKV infection produces a range of mild to severe pathologies, including microcephaly. To understand the pathophysiology of ZIKV infection, we used models of the developing brain that faithfully recapitulate the tissue architecture in early to midgestation. We identify the brain cell populations that are most susceptible to ZIKV infection in primary human tissue, provide evidence for a mechanism of viral entry, and show that a commonly used antibiotic protects cultured brain cells by reducing viral proliferation. In the brain, ZIKV preferentially infected neural stem cells, astrocytes, oligodendrocyte precursor cells, and microglia, whereas neurons were less susceptible to infection. These findings suggest mechanisms for microcephaly and other pathologic features of infants with congenital ZIKV infection that are not explained by neural stem cell infection alone, such as calcifications in the cortical plate. Furthermore, we find that blocking the glia-enriched putative viral entry receptor AXL reduced ZIKV infection of astrocytes in vitro, and genetic knockdown of AXL in a glial cell line nearly abolished infection. Finally, we evaluate 2,177 compounds, focusing on drugs safe in pregnancy. We show that the macrolide antibiotic azithromycin reduced viral proliferation and virus-induced cytopathic effects in glial cell lines and human astrocytes. Our characterization of infection in the developing human brain clarifies the pathogenesis of congenital ZIKV infection and provides the basis for investigating possible therapeutic strategies to safely alleviate or prevent the most severe consequences of the epidemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus

              Summary Objectives Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged to cause fatal infections in patients in the Middle East and traveler-associated secondary cases in Europe and Africa. Person-to-person transmission is evident in outbreaks involving household and hospital contacts. Effective antivirals are urgently needed. Methods We used small compound-based forward chemical genetics to screen a chemical library of 1280 known drugs against influenza A virus in Biosafety Level-2 laboratory. We then assessed the anti-MERS-CoV activities of the identified compounds and of interferons, nelfinavir, and lopinavir because of their reported anti-coronavirus activities in terms of cytopathic effect inhibition, viral yield reduction, and plaque reduction assays in Biosafety Level-3 laboratory. Results Ten compounds were identified as primary hits in high-throughput screening. Only mycophenolic acid exhibited low EC50 and high selectivity index. Additionally, ribavirin and interferons also exhibited in-vitro anti-MERS-CoV activity. The serum concentrations achievable at therapeutic doses of mycophenolic acid and interferon-β1b were 60–300 and 3–4 times higher than the concentrations at which in-vitro anti-MERS-CoV activities were demonstrated, whereas that of ribavirin was ∼2 times lower. Combination of mycophenolic acid and interferon-β1b lowered the EC50 of each drug by 1–3 times. Conclusions Interferon-β1b with mycophenolic acid should be considered in treatment trials of MERS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Trends Microbiol
                Trends Microbiol
                Trends in Microbiology
                Elsevier Ltd.
                0966-842X
                1878-4380
                11 May 2018
                October 2018
                11 May 2018
                : 26
                : 10
                : 865-876
                Affiliations
                [1 ]Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
                Author notes
                Article
                S0966-842X(18)30087-8
                10.1016/j.tim.2018.04.004
                7126639
                29759926
                454aeaf7-174f-4287-aa61-61dc7ac7f589
                © 2018 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Microbiology & Virology
                drug repurposing,antiviral drugs,phenotypic screening,mechanism-based screening,combination therapy,emerging viruses

                Comments

                Comment on this article