3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Review on the Drug Intolerance and Vaccine Development for the Leishmaniasis

      1 , 2 , 2
      Current Drug Targets
      Bentham Science Publishers Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract:

          Leishmaniasis is one of the Neglected Tropical Diseases (NTDs), a zoonotic disease of vector-borne nature that is caused by a protozoan parasite Leishmania. This parasite is transmitted by the vector sandfly into the human via a bite. Visceral leishmaniasis (VL), also called kala-azar, is the most fatal among the types of leishmaniasis, with high mortality mostly spread in the East Africa and South Asia regions. WHO report stated that approximately 3.3 million disabilities occur every year due to the disease along with approximately 50,000 annual deaths. The real matter of concern is that there is no particular effective medicine/vaccine available against leishmaniasis to date except a few approved drugs and chemotherapy for the infected patient. The current selection of small compounds was constrained, and their growing drug resistance had been a major worry. Additionally, the serious side effects on humans of the available therapy or drugs have made it essential to discover efficient and low-cost methods to speed up the development of new drugs against leishmaniasis. Ideally, the vaccine could be a low risk and effective alternative for both CL and VL and elicit long-lasting immunity against the disease. There are a number of vaccine candidates at various stages of clinical development and preclinical stage. However, none has successfully passed all clinical trials. But, the successful development and approval of commercially available vaccines for dogs against canine leishmaniasis (CanL) provides evidence that it can be possible for humans in distant future. In the present article, the approaches used for the development of vaccines for leishmaniasis are discussed and the progress being made is briefly reviewed.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity.

          The long-term persistence of pathogens in a host that is also able to maintain strong resistance to reinfection, referred to as concomitant immunity, is a hallmark of certain infectious diseases, including tuberculosis and leishmaniasis. The ability of pathogens to establish latency in immune individuals often has severe consequences for disease reactivation. Here we show that the persistence of Leishmania major in the skin after healing in resistant C57BL/6 mice is controlled by an endogenous population of CD4+CD25+ regulatory T cells. These cells constitute 5-10% of peripheral CD4+ T cells in naive mice and humans, and suppress several potentially pathogenic responses in vivo, particularly T-cell responses directed against self-antigens. During infection by L. major, CD4+CD25+ T cells accumulate in the dermis, where they suppress-by both interleukin-10-dependent and interleukin-10-independent mechanisms-the ability of CD4+CD25- effector T cells to eliminate the parasite from the site. The sterilizing immunity achieved in mice with impaired IL-10 activity is followed by the loss of immunity to reinfection, indicating that the equilibrium established between effector and regulatory T cells in sites of chronic infection might reflect both parasite and host survival strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Leishmaniasis: a review

            Leishmaniasis is caused by an intracellular parasite transmitted to humans by the bite of a sand fly. It is endemic in Asia, Africa, the Americas, and the Mediterranean region. Worldwide, 1.5 to 2 million new cases occur each year, 350 million are at risk of acquiring the disease, and leishmaniasis causes 70,000 deaths per year. Clinical features depend on the species of Leishmania involved and the immune response of the host. Manifestations range from the localized cutaneous to the visceral form with potentially fatal outcomes. Many drugs are used in its treatment, but the only effective treatment is achieved with current pentavalent antimonials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

              Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Current Drug Targets
                CDT
                Bentham Science Publishers Ltd.
                13894501
                October 2023
                October 2023
                : 24
                : 13
                : 1023-1031
                Affiliations
                [1 ]Centre of Sustainable Polymers, Indian Institute of Technology, Guwahati, Assam, India
                [2 ]Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
                Article
                10.2174/0113894501254585230927100440
                bf463fa2-b68b-42c3-a837-ca050484b74d
                © 2023
                History

                Comments

                Comment on this article