22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae123

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfaction presents the ultimate challenge to molecular recognition as thousands of molecules have to be recognized by far fewer olfactory receptors. We have presented evidence that Drosophila readily distinguish odorants based on their molecular vibrations using a battery of behavioral assays suggesting engagement of a molecular vibration-sensing component. Here we interrogate electrophysiologically the antennae of four Drosophilids and demonstrate conserved differential response amplitudes to aldehydes, alcohols, ketones, nitriles, and their deuterated isotopologues. Certain deuterated odorants evoked larger electroantennogram (EAG) amplitudes, while the response to the normal odorant was elevated in others. Significantly, benzonitrile isotopologues were not distinguishable as predicted. This suggests that isotopologue-specific EAG amplitudes result from differential activation of specific olfactory receptors. In support of this, odorants with as few as two deuteria evoke distinct EAG amplitudes from their normal isotopologues, and this is independent of the size of the deuterated molecule. Importantly, we find no evidence that these isotopologue-specific amplitudes depend on perireceptor mechanisms or other pertinent physical property of the deuterated odorants. Rather, our results strongly suggest that Drosophilid olfactory receptors are activated by molecular vibrations differentiating similarly sized and shaped odorants in vivo, yielding sufficient differential information to drive behavioral choices.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Insect olfactory receptors are heteromeric ligand-gated ion channels.

          In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.

            From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular basis of odor coding in the Drosophila antenna.

              We have undertaken a functional analysis of the odorant receptor repertoire in the Drosophila antenna. Each receptor was expressed in a mutant olfactory receptor neuron (ORN) used as a "decoder," and the odor response spectrum conferred by the receptor was determined in vivo by electrophysiological recordings. The spectra of these receptors were then matched to those of defined ORNs to establish a receptor-to-neuron map. In addition to the odor response spectrum, the receptors dictate the signaling mode, i.e., excitation or inhibition, and the response dynamics of the neuron. An individual receptor can mediate both excitatory and inhibitory responses to different odorants in the same cell, suggesting a model of odorant receptor transduction. Receptors vary widely in their breadth of tuning, and odorants vary widely in the number of receptors they activate. Together, these properties provide a molecular basis for odor coding by the receptor repertoire of an olfactory organ.
                Bookmark

                Author and article information

                Journal
                eNeuro
                eNeuro
                eneuro
                eneuro
                eNeuro
                eNeuro
                Society for Neuroscience
                2373-2822
                31 May 2016
                20 June 2016
                May-Jun 2016
                : 3
                : 3
                : ENEURO.0152-15.2016
                Affiliations
                [1 ]Division of Neuroscience, Biomedical Sciences Research Centre “Alexander Fleming,” 16672 Vari, Greece
                [2 ]Department of Basic Sciences, School of Nursing, National and Kapodistrian University of Athens , 11527 Athens, Greece
                [3 ]Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens , 15780 Athens, Greece
                [4 ]Institute of Theoretical Physics, Ulm University , 89073 Ulm, Germany
                Author notes
                [1]

                The authors declare no competing financial interests.

                [2]

                Author contributions: E.D., A.G., and K.M. performed research; E.D., A.G., K.M., L.T., and E.M.C.S. analyzed data; E.D., L.T., and E.M.C.S. wrote the paper; A.G., L.T., and E.M.C.S. designed research.

                [3]

                This research was supported by European Union and Greek Secretariat for Research and Technology (Grant ARISTIA [2303-QUANTOLF]) and the Defense Advanced Research Projects Agency of the U.S. Department of Defense (Grant N66001-10-1-4062). L.T. was supported by the EU Synergy Grant BioQ, the EU FET Grant PAPETS, and the Alexander von Humboldt Foundation.

                [*]

                E.D. and A.G. contributed equally to this work.

                Correspondence should be addressed to Efthimios M. C. Skoulakis, Division of Neuroscience, Biomedical Sciences Research Centre “Alexander Fleming,” 34 Fleming Street, Vari 16672 Greece. E-mail: skoulakis@ 123456fleming.gr .
                Article
                eN-NWR-0152-15
                10.1523/ENEURO.0152-15.2016
                4913217
                27351023
                452e002f-9514-4d1f-a95b-8583dfc62490
                Copyright © 2016 Drimyli et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 7 December 2015
                : 8 April 2016
                : 2 May 2016
                Page count
                Figures: 7, Tables: 8, Equations: 0, References: 61, Pages: 23, Words: 15907
                Funding
                Funded by: European Union and Greek Secretariat for Research and Technology
                Award ID: ARISTIA (2303-QUANTOLF)
                Funded by: US Defence Advanced Research Projects Agency
                Award ID: N66001-10-1-4062
                Categories
                8
                New Research
                Sensory and Motor Systems
                Custom metadata
                May/June 2016

                antennograms,drosophila,isotopomers,molecular vibrations,olfaction,olfactory receptors

                Comments

                Comment on this article