15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adamantinomatous craniopharyngioma cyst fluid can trigger inflammatory activation of microglia to damage the hypothalamic neurons by inducing the production of β-amyloid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The mechanism by which adamantinomatous craniopharyngioma (ACP) damages the hypothalamus is still unclear. Cyst fluid rich in lipids and inflammatory factors is a characteristic pathological manifestation of ACP and may play a very important role in hypothalamic injury caused by tumors.

          Objective

          The objective of this study was to construct a reliable animal model of ACP cyst fluid-induced hypothalamic injury and explore the specific mechanism of hypothalamic injury caused by cyst fluid.

          Methods

          An animal model was established by injecting human ACP cyst fluid into the bilateral hypothalamus of mice. ScRNA-seq was performed on the mice hypothalamus and on an ACP sample to obtain a complete gene expression profile for analysis. Data verification was performed through pathological means.

          Results

          ACP cystic fluid caused growth retardation and an increased obesity index in mice, affected the expression of the Npy, Fgfr2, Rnpc3, Sst, and Pcsk1n genes that regulate growth and energy metabolism in hypothalamic neurons, and enhanced the cellular interaction of Agrp–Mc3r. ACP cystic fluid significantly caused inflammatory activation of hypothalamic microglia. The cellular interaction of CD74–APP is significantly strengthened between inflammatory activated microglia and hypothalamic neurons. Beta-amyloid, a marker of neurodegenerative diseases, was deposited in the ACP tumor tissues and in the hypothalamus of mice injected with ACP cyst fluid.

          Conclusion

          In this study, a novel animal model of ACP cystic fluid-hypothalamic injury was established. For the first time, it was found that ACP cystic fluid can trigger inflammatory activation of microglia to damage the hypothalamus, which may be related to the upregulation of the CD74–APP interaction and deposition of β-amyloid, implying that there may be a similar mechanism between ACP cystic fluid damage to the hypothalamus and neurodegenerative diseases.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12974-022-02470-6.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The amyloid hypothesis of Alzheimer's disease at 25 years

          Abstract Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer's disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down's syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients' brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes

            Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types

              The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility, and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a novel leptin-sensing neuronal population, multiple AgRP and POMC subtypes, and an orexigenic somatostatin neuronal population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinctly responsive subtypes of AgRP and POMC neurons. Finally, integrating our data with human GWAS data implicates two previously unknown neuronal subtypes in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.
                Bookmark

                Author and article information

                Contributors
                qisongtaosjwk@163.com
                1448875873@qq.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                7 May 2022
                7 May 2022
                2022
                : 19
                : 108
                Affiliations
                GRID grid.416466.7, ISNI 0000 0004 1757 959X, Department of Neurosurgery, , Nanfang Hospital, Southern Medical University, ; No. 1838, Guangzhou North Road, Guangzhou, Guangdong China
                Article
                2470
                10.1186/s12974-022-02470-6
                9080190
                35525962
                434d3efe-e516-4d66-9eb4-bdd3e8b67d06
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 19 December 2021
                : 27 April 2022
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award ID: 81972352
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Neurosciences
                adamantinomatous craniopharyngioma,cyst fluid,hypothalamus,single-cell rna sequencing,microglia,inflammation,β-amyloid,growth retardation,obesity

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content83

                Cited by8

                Most referenced authors878