18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species ( Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored.

          Results

          Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group.

          Conclusions

          We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

          Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bayes Factors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BEAST 2: A Software Platform for Bayesian Evolutionary Analysis

              We present a new open source, extensible and flexible software platform for Bayesian evolutionary analysis called BEAST 2. This software platform is a re-design of the popular BEAST 1 platform to correct structural deficiencies that became evident as the BEAST 1 software evolved. Key among those deficiencies was the lack of post-deployment extensibility. BEAST 2 now has a fully developed package management system that allows third party developers to write additional functionality that can be directly installed to the BEAST 2 analysis platform via a package manager without requiring a new software release of the platform. This package architecture is showcased with a number of recently published new models encompassing birth-death-sampling tree priors, phylodynamics and model averaging for substitution models and site partitioning. A second major improvement is the ability to read/write the entire state of the MCMC chain to/from disk allowing it to be easily shared between multiple instances of the BEAST software. This facilitates checkpointing and better support for multi-processor and high-end computing extensions. Finally, the functionality in new packages can be easily added to the user interface (BEAUti 2) by a simple XML template-based mechanism because BEAST 2 has been re-designed to provide greater integration between the analysis engine and the user interface so that, for example BEAST and BEAUti use exactly the same XML file format.
                Bookmark

                Author and article information

                Contributors
                tsimoes@fas.harvard.edu
                Journal
                BMC Biol
                BMC Biol
                BMC Biology
                BioMed Central (London )
                1741-7007
                7 December 2020
                7 December 2020
                2020
                : 18
                : 191
                Affiliations
                [1 ]GRID grid.38142.3c, ISNI 000000041936754X, Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, , Harvard University, ; Cambridge, MA 02138 USA
                [2 ]GRID grid.17089.37, Department of Biological Sciences, , University of Alberta, ; Edmonton, Alberta T6G 2E9 Canada
                [3 ]GRID grid.17089.37, Department of Earth and Atmospheric Sciences, , University of Alberta, ; Edmonton, Alberta T6G 2E9 Canada
                Author information
                http://orcid.org/0000-0003-4716-649X
                http://orcid.org/0000-0002-2377-3925
                http://orcid.org/0000-0003-0717-1841
                Article
                901
                10.1186/s12915-020-00901-5
                7720557
                33287835
                433d2d7f-1693-47dc-bba5-82dcb2246835
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 June 2020
                : 16 October 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010952, Museum of Comparative Zoology, Harvard University;
                Award ID: Alexander Agassiz Postdoctoral Fellowship
                Award ID: Ernest Mayr Travel Grant
                Funded by: FundRef http://dx.doi.org/10.13039/501100002790, Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada;
                Award ID: DG #23458
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Life sciences
                phylogenetics,macroevolution,morphological clocks,bayesian inference,prior models,divergence times,evolutionary rates,sphenodontians,sphenodon,“living fossil”

                Comments

                Comment on this article