132
views
1
recommends
+1 Recommend
1 collections
    2
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two bolaamphiphilic compounds with identical acetylcholine (ACh) head groups, but with different lengths of an alkyl chain pendant adjacent to the head group, as well as differences between their hydrophobic skeleton, were investigated for their ability to self-assemble into vesicles that release their encapsulated content upon hydrolysis of their head groups by acetylcholinesterase (AChE). One of these bolaamphiphiles, synthesized from vernolic acid, has an alkyl chain pendant of five methylene groups, while the other, synthesized from oleic acid, has an alkyl chain pendant of eight methylene groups. Both bolaamphiphiles formed stable spherical vesicles with a diameter of about 130 nm. The ACh head groups of both bolaamphiphiles were hydrolyzed by AChE, but the hydrolysis rate was significantly faster for the bolaamphiphile with the shorter aliphatic chain pendant. Likewise, upon exposure to AChE, vesicles made from the bolaamphiphile with the shorter alkyl chain pendant released their encapsulated content faster than vesicles made from the bolaamphiphile with the longer alkyl chain pendant. Our results suggest that the steric environment around the ACh head group of bolaamphiphiles is a major factor affecting the hydrolysis rate of the head groups by AChE. Attaching an alkyl chain to the bolaamphiphile near the ACh head group allows self-assembled vesicles to form with a controlled release rate of the encapsulated materials, whereas shorter alkyl chains enable a faster head group hydrolysis, and consequently faster release, than longer alkyl chains. This principle may be implemented in the design of bolaamphiphiles for the formation of vesicles for drug delivery with desired controlled release rates.

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential

          Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors.

            The rapid clearance of circulating liposomes from the bloodstream, coupled with their high uptake by liver and spleen, has thus far been an obstacle to any attempts at targeting to tumors. We have assessed the impact of liposome composition on their clearance from the circulation in normal and tumor-bearing mice and on their uptake by tumors and various normal tissues. By selective changes in lipid composition, while maintaining a mean particle diameter of approximately equal to 100 nm, we have achieved up to a 60-fold increase in the fraction of recovered dose present in blood 24 hr after i.v. injection. Concomitantly, there was a decrease by a factor of 4 of the recovered dose localizing in the liver and spleen, the major organs of the reticuloendothelial system. Parallel experiments in tumor-bearing mice demonstrated a 25-fold increase of the liposome concentration in the tumor when formulations with long and short blood residence time were compared. The most favorable results were obtained with liposomes containing a small molar fraction of a negatively charged glycolipid, such as monosialoganglioside or phosphatidylinositol, and a solid-phase neutral phospholipid as the bulk component. The bio-distribution of such formulations is of considerable therapeutic potential in cancer for increasing the concentration of cytotoxic agents in tumors while minimizing the likelihood of toxicity to the reticuloendothelial system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates.

              Titratable polyanions, and more particularly polymers bearing carboxylate groups, have been used in recent years to produce a variety of pH-sensitive colloids. These polymers undergo a coil-to-globule conformational change upon a variation in pH of the surrounding environment. This conformational change can be exploited to trigger the release of a drug from a drug delivery system in a pH-dependent fashion. This review describes the current status of pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates and their performance as nano-scale drug delivery systems, with emphasis on our recent contribution to this field. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2014
                2014
                20 January 2014
                : 9
                : 561-574
                Affiliations
                [1 ]Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                [2 ]Istituto di Scienze e Tecnologie Molecolari-CNR, Milano, Italy
                [3 ]Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                [4 ]Zuckerberg Water Institute and Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                Author notes
                Correspondence: Sarina Grinberg, Department of Chemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel, Tel +972 8 646 1944, Fax +972 8 647 2969, Email sarina@ 123456bgu.ac.il
                Eliahu Heldman, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel, Tel +972 8 647 7675, Fax +972 8 647 2969, Email heldmane@ 123456bgu.ac.il
                Article
                ijn-9-561
                10.2147/IJN.S53563
                3901739
                24531296
                414c2fd9-a43d-4390-9e7d-541298f31be4
                © 2014 Stern et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                bolaamphiphiles,drug delivery,vesicles,controlled release,acetylcholine,acetylcholinesterase

                Comments

                Comment on this article