29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell therapy, which has become a potential regenerative medical treatment and a promising approach for treating brain injuries induced by different types of cerebrovascular disease, has various application methods. Activation of endogenous neural stem cells (NSCs) can enable infarcted neuron replacement and promote neural networks’ regeneration without the technical and ethical issues associated with the transplantation of exogenous stem cells. Thus, NSC activation can be a feasible strategy to treat central nervous system (CNS) injury. The potential molecular mechanisms of drug therapy for the activation of endogenous NSCs have gradually been revealed by researchers. Traditional Chinese medicine monomers (TCMs) are active components extracted from Chinese herbs, and some of them have demonstrated the potential to activate proliferation and neurogenesis of NSCs in CNS diseases. Ginsenoside Rg1, astragaloside IV (AST), icariin (ICA), salvianolic acid B (Sal B), resveratrol (RES), curcumin, artesunate (ART), and ginkgolide B (GB) have positive effects on NSCs via different signaling pathways and molecules, such as the Wingless/integrated/β-catenin (Wnt/β-catenin) signaling pathway, the sonic hedgehog (Shh) signaling pathway, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). This article may provide further motivation for researchers to take advantage of TCMs in studies on CNS injury and stem cell therapy.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling.

          Recent improvements in the monitoring and modelling of stroke have led to more reliable estimates of stroke mortality and burden worldwide. However, little is known about the global distribution of stroke and its relations to the prevalence of cardiovascular disease risk factors and sociodemographic and economic characteristics. National estimates of stroke mortality and burden (measured in disability-adjusted life years [DALYs]) were calculated from monitoring vital statistics, a systematic review of studies that report disease surveillance, and modelling as part of the WHO Global Burden of Disease programme. Similar methods were used to generate standardised measures of the national prevalence of cardiovascular risk factors. Risk factors other than diabetes and disease burden estimates were age-adjusted and sex-adjusted to the WHO standard population. There was a ten-fold difference in rates of stroke mortality and DALY loss between the most-affected and the least-affected countries. Rates of stroke mortality and DALY loss were highest in eastern Europe, north Asia, central Africa, and the south Pacific. National per capita income was the strongest predictor of mortality and DALY loss rates (p<0.0001) even after adjustment for cardiovascular risk factors (p<0.0001). Prevalences of cardiovascular risk factors measured at a national level were generally poor predictors of national stroke mortality rates and burden, although raised mean systolic blood pressure (p=0.028) and low body-mass index (p=0.017) predicted stroke mortality, and greater prevalence of smoking predicted both stroke mortality (p=0.041) and DALY-loss rates (p=0.034). Rates of stroke mortality and burden vary greatly among countries, but low-income countries are the most affected. Current measures of the prevalence of cardiovascular risk factors at the population level poorly predict overall stroke mortality and burden and do not explain the greater burden in low-income countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Chemistry of Curcumin: From Extraction to Therapeutic Agent

            Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans

              Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                26 February 2021
                2021
                : 15
                : 628115
                Affiliations
                [1] 1Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University) , Chongqing, China
                [2] 2Department of Neurology, Southwest Hospital, Third Military Medical University (Army Military Medical University) , Chongqing, China
                [3] 3Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau , Macau, China
                Author notes

                Edited by: Yao Yao, University of Georgia, United States

                Reviewed by: Jiping Tang, Loma Linda University, United States; Xiangming Zha, University of South Alabama, United States

                *Correspondence: Liang Tan tracy200712@ 123456hotmail.com Feng Wan fwan@ 123456um.edu.mo

                These authors have contributed equally to this work

                Specialty section: This article was submitted to Cellular Neurophysiology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2021.628115
                7952516
                33716673
                3e49a8a4-b8a5-4559-8bfa-a34fc1fef2da
                Copyright © 2021 Wang, Hu, Chen, Lei, Feng, Wan and Tan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2020
                : 19 January 2021
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 111, Pages: 9970, Words: 11
                Categories
                Cellular Neuroscience
                Review

                Neurosciences
                stroke,neural stem cells,traditional chinese medicine monomers,neuroregeneration,central nervous system

                Comments

                Comment on this article

                scite_
                28
                0
                23
                0
                Smart Citations
                28
                0
                23
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content245

                Cited by16

                Most referenced authors1,307