4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decision-making of IoT device operation based on intelligent-task offloading for improving environmental optimization

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computation offloading enables intensive computational tasks to be separated into multiple computing resources for overcoming hardware limitations. Leveraging cloud computing, edge computing can be enabled to apply not only large-scale and personalized data but also intelligent algorithms based on offloading the intelligent models to high-performance servers for working with huge volumes of data in the cloud. In this paper, we propose a getaway-centric Internet of Things (IoT) system to enable the intelligent and autonomous operation of IoT devices in edge computing. In the proposed edge computing, IoT devices are operated by a decision-making model that selects an optimal control factor from multiple intelligent services and applies it to the device. The intelligent services are provided based on offloading multiple intelligent and optimization approaches to the intelligent service engine in the cloud. Therefore, the decision-making model in the gateway is enabled to select the best solution from the candidates. Also, the proposed IoT system provides monitoring and visualization to users through device management based on resource virtualization using the gateway. Furthermore, the gateway interprets scenario profiles to interact with intelligent services dynamically and apply the optimal control factor to the actual device through the virtual resource. For implementing the improved energy optimization using the proposed IoT system, we propose two intelligent models to learn parameters of a user’s residential environment using deep learning and derive the inference models to deploy in the intelligent service engine. The inference models are used for predicting a heater energy consumption that is applied to the heater. The heater updates the environment parameters to reach the user-desired values. Moreover, based on two energy consumption values, the decision-making model brings a smaller value to operate the heater to enable reducing the energy consumption as well as providing a user-desired environment.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Integration of Cloud computing and Internet of Things: A survey

                Bookmark

                Author and article information

                Contributors
                Journal
                Complex & Intelligent Systems
                Complex Intell. Syst.
                Springer Science and Business Media LLC
                2199-4536
                2198-6053
                October 2022
                February 11 2022
                October 2022
                : 8
                : 5
                : 3847-3866
                Article
                10.1007/s40747-022-00659-z
                38e2042c-ba24-4798-b86a-31e616e96845
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article