280
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Immunity-related genes and gene families in Anopheles gambiae.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The Toll and Imd pathways are the major regulators of the immune response in Drosophila.

          Microarray studies have shown recently that microbial infection leads to extensive changes in the Drosophila gene expression programme. However, little is known about the control of most of the fly immune-responsive genes, except for the antimicrobial peptide (AMP)-encoding genes, which are regulated by the Toll and Imd pathways. Here, we used oligonucleotide microarrays to monitor the effect of mutations affecting the Toll and Imd pathways on the expression programme induced by septic injury in Drosophila adults. We found that the Toll and Imd cascades control the majority of the genes regulated by microbial infection in addition to AMP genes and are involved in nearly all known Drosophila innate immune reactions. However, we identified some genes controlled by septic injury that are not affected in double mutant flies where both Toll and Imd pathways are defective, suggesting that other unidentified signalling cascades are activated by infection. Interestingly, we observed that some Drosophila immune-responsive genes are located in gene clusters, which often are transcriptionally co-regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein.

            Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.

              Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                American Association for the Advancement of Science (AAAS)
                1095-9203
                0036-8075
                Oct 04 2002
                : 298
                : 5591
                Affiliations
                [1 ] European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
                Article
                298/5591/159
                10.1126/science.1077136
                12364793
                385a6c11-245f-406d-84e7-1ba65e97fe7f
                History

                Comments

                Comment on this article