73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.

      Science (New York, N.Y.)
      Animals, Anopheles, chemistry, genetics, physiology, Biological Evolution, Chromosome Inversion, Chromosomes, Cluster Analysis, Dosage Compensation, Genetic, Drosophila Proteins, Drosophila melanogaster, Exons, Gene Order, Genes, Insect, Genome, Insect Proteins, Introns, Physical Chromosome Mapping, Protein Structure, Tertiary, Proteome, Pseudogenes, Sequence Homology, Nucleic Acid, Species Specificity, Synteny

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of the malaria mosquito Anopheles gambiae.

            Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Distinguishing homologous from analogous proteins.

                Bookmark

                Author and article information

                Comments

                Comment on this article