3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The atmospheric impact trajectory of asteroid 2014 AA

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Near-Earth asteroid 2014 AA entered the Earth's atmosphere on 2014 January 2, only 21 hours after being discovered by the Catalina Sky Survey. In this paper we compute the trajectory of 2014 AA by combining the available optical astrometry, seven ground-based observations over 69 minutes, and the International Monitoring system detection of the atmospheric impact infrasonic airwaves in a least-squares orbit estimation filter. The combination of these two sources of observations results in a tremendous improvement in the orbit uncertainties. The impact time is 3:05 UT with a 1-sigma uncertainty of 6 min, while the impact location corresponds to a west longitude of 44.7 deg and a latitude of 13.1 deg with a 1-sigma uncertainty of 140 km. The minimum impact energy estimated from the infrasound data and the impact velocity result in an estimated minimum mass of 22.6 t. By propagating the trajectory of 2014 AA backwards we find that the only window for finding precovery observations is for the three days before its discovery.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          Numerical Modelling of Instantaneous Plate Tectonics

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The population of near-Earth asteroids

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Density of asteroids

              A considerable amount of information regarding the processes that occurred during the accretion of the early planetesimals is still present among the small bodies of our solar system. A review of our current knowledge of the density of small bodies is presented here. Intrinsic physical properties of small bodies are sought by searching for relationships between the dynamical and taxonomic classes, size, and density. Mass and volume estimates for 287 small bodies are collected from the literature. The accuracy and biases affecting the methods used to estimate these quantities are discussed and best-estimates are strictly selected. Bulk densities are subsequently computed and compared with meteorite density, allowing to estimate the macroporosity within these bodies. Dwarf-planets apparently have no macroporosity, while smaller bodies can have large voids. This trend is apparently correlated with size: C and S-complex asteroids tends to have larger density with increasing diameter. The average density of each Bus-DeMeo taxonomic classes is computed. S-complex asteroids are more dense on average than those in the C-complex that in turn have a larger macroporosity, although both complexes partly overlap. Within the C-complex, B-types stand out in albedo, reflectance spectra, and density, indicating a unique composition. Asteroids in the X-complex span a wide range of densities, suggesting that many compositions are included in the complex. Comets and TNOs have high macroporosity and low density, supporting the current models of internal structures made of icy aggregates. The number of density estimates sky-rocketed during last decade from a handful to 287, but only a third of the estimates are more precise than 20%. Several lines of investigation to refine this are contemplated, including observations of multiple systems, 3-D shape modeling, and orbital analysis from Gaia astrometry.
                Bookmark

                Author and article information

                Journal
                2016-01-13
                Article
                1601.03339
                3760aab2-021a-45f3-b284-9eb141cbee84

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                astro-ph.EP

                Planetary astrophysics
                Planetary astrophysics

                Comments

                Comment on this article