33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistence of Hyperinvasive Meningococcal Strain Types during Global Spread as Recorded in the PubMLST Database

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for ‘serogroup B substitute’ vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database ( www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.

          Traditional and molecular typing schemes for the characterization of pathogenic microorganisms are poorly portable because they index variation that is difficult to compare among laboratories. To overcome these problems, we propose multilocus sequence typing (MLST), which exploits the unambiguous nature and electronic portability of nucleotide sequence data for the characterization of microorganisms. To evaluate MLST, we determined the sequences of approximately 470-bp fragments from 11 housekeeping genes in a reference set of 107 isolates of Neisseria meningitidis from invasive disease and healthy carriers. For each locus, alleles were assigned arbitrary numbers and dendrograms were constructed from the pairwise differences in multilocus allelic profiles by cluster analysis. The strain associations obtained were consistent with clonal groupings previously determined by multilocus enzyme electrophoresis. A subset of six gene fragments was chosen that retained the resolution and congruence achieved by using all 11 loci. Most isolates from hyper-virulent lineages of serogroups A, B, and C meningococci were identical for all loci or differed from the majority type at only a single locus. MLST using six loci therefore reliably identified the major meningococcal lineages associated with invasive disease. MLST can be applied to almost all bacterial species and other haploid organisms, including those that are difficult to cultivate. The overwhelming advantage of MLST over other molecular typing methods is that sequence data are truly portable between laboratories, permitting one expanding global database per species to be placed on a World-Wide Web site, thus enabling exchange of molecular typing data for global epidemiology via the Internet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How clonal are bacteria?

            Data from multilocus enzyme electrophoresis of bacterial populations were analyzed using a statistical test designed to detect associations between genes at different loci. Some species (e.g., Salmonella) were found to be clonal at all levels of analysis. At the other extreme, Neisseria gonorrhoeae is panmictic, with random association between loci. Two intermediate types of population structure were also found. Neisseria meningitidis displays what we have called an "epidemic" structure. There is significant association between loci, but this arises only because of the recent, explosive, increase in particular electrophoretic types; when this effect is eliminated the population is found to be effectively panmictic. In contrast, linkage disequilibrium in a population of Rhizobium meliloti exists because the sample consisted of two genetically isolated divisions, often fixed for different alleles: within each division association between loci was almost random. The method of analysis is appropriate whenever there is doubt about the extent of genetic recombination between members of a population. To illustrate this we analyzed data on protozoan parasites and again found panmictic, epidemic, and clonal population structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meningococcal carriage and disease—Population biology and evolution

              Meningococcal disease occurs worldwide with incidence rates varying from 1 to 1000 cases per 100,000. The causative organism, Neisseria meningitidis, is an obligate commensal of humans, which normally colonizes the mucosa of the upper respiratory tract without causing invasive disease, a phenomenon known as carriage. Studies using molecular methods have demonstrated the extensive genetic diversity of meningocococci isolated from carriers, in contrast to a limited number of genetic types, known as the hyperinvasive lineages, associated with invasive disease. Population and evolutionary models that invoke positive selection can be used to resolve the apparent paradox of virulent lineages persisting during the global spread of a non-clonal and normally commensal bacterium. The application of insights gained from studies of meningococcal population biology and evolution is important in understanding the spread of disease, as well as in vaccine development and implementation, especially with regard to the challenge of producing comprehensive vaccines based on sub-capsular antigens and measuring their effectiveness.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                28 September 2012
                : 7
                : 9
                : e45349
                Affiliations
                [1]Department of Zoology, University of Oxford, Oxford, United Kingdom
                Melbourne School of Population Health, Australia
                Author notes

                Competing Interests: ERW declares that no competing interests exist. MCJM is named as an inventor on patent applications in the area of serogroup B meningococcal vaccine development.

                Analyzed the data: ERW MCJM. Wrote the paper: ERW MCJM.

                Article
                PONE-D-12-17947
                10.1371/journal.pone.0045349
                3460945
                23028953
                34f45433-d0eb-47fc-afc8-da8bf23574e3
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2012
                : 15 August 2012
                Page count
                Pages: 8
                Funding
                This work was funded by the Wellcome Trust (grant number: 087622/Z/08/Z) and Merton College Oxford (Jackson Scholarship). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Organismal Evolution
                Microbial Evolution
                Medicine
                Clinical Immunology
                Immunity
                Vaccination
                Vaccine Development
                Global Health
                Infectious Diseases
                Bacterial Diseases
                Meningococcal Disease
                Infectious Disease Control
                Public Health
                Disease Ecology
                Immunizations

                Uncategorized
                Uncategorized

                Comments

                Comment on this article