10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BMMSC-sEV-derived miR-328a-3p promotes ECM remodeling of damaged urethral sphincters via the Sirt7/TGFβ signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stress urinary incontinence (SUI) is a common and bothersome condition. Invasive surgery will always be considered after conservative treatment fails, but the rates of postoperative complications and long-term recurrence are high. Thus, a new treatment strategy is still needed. In recent years, bone marrow mesenchymal stem cells (BMMSC) have shown great promise for SUI treatment. The therapeutic effects of BMMSC on SUI are achieved mainly by paracrine pathway signaling molecules, such as small extracellular vesicles (sEV). sEV are recognized as essential mediators of cell-to-cell communication. However, the therapeutic effects and detailed mechanisms of BMMSC-derived sEV in SUI remain mostly unexplored.

          Methods

          The effects of BMMSC-sEV on extracellular matrix (ECM) metabolism were assessed in vitro and in vivo. In a SUI rat model, TGF-β1 signaling was examined with or without BMMSC-sEV stimulation. sEV miRNAs were deeply sequenced, and the most likely miRNAs were evaluated as mediators of the TGF-β1 signaling pathway.

          Results

          BMMSC-sEV enhanced the synthesis of ECM components, including elastin, collagen I, and collagen III, and improved urethral function. Furthermore, BMMSC-sEV activated TGF-β1 signaling in primary fibroblast cells and in rat urethras. Several differentially expressed miRNAs were identified in the BMMSC-sEV. Bioinformatics analysis and in vitro studies showed that BMMSC-sEV miR-328a-3p can be transferred from BMMSC to fibroblasts and can regulate the Sirt7/TGF-β1 signaling pathway.

          Conclusion

          BMMSC-sEV promote ECM remodeling of damaged urethral sphincters by transferring miR-328a-3p to regulate the Sirt7/TGF-β1 signaling pathway.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis

          Background Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) have emerged as a promising alternative for stem cell transplantation therapy. Exosomes derived from mesenchymal stem cells (MSC-Exos) can play important roles in repairing injured tissues. However, to date, no reports have demonstrated the use of hiPSC-MSC-Exos in cutaneous wound healing, and little is known regarding their underlying mechanisms in tissue repair. Methods hiPSC-MSC-Exos were injected subcutaneously around wound sites in a rat model and the efficacy of hiPSC-MSC-Exos was assessed by measuring wound closure areas, by histological and immunofluorescence examinations. We also evaluated the in vitro effects of hiPSC-MSC-Exos on both the proliferation and migration of human dermal fibroblasts and human umbilical vein endothelial cells (HUVECs) by cell-counting and scratch assays, respectively. The effects of exosomes on fibroblast collagen and elastin secretion were studied in enzyme-linked immunosorbent assays and quantitative reverse-transcriptase–polymerase chain reaction (qRT-PCR). In vitro capillary network formation was determined in tube-formation assays. Results Transplanting hiPSC-MSC-Exos to wound sites resulted in accelerated re-epithelialization, reduced scar widths, and the promotion of collagen maturity. Moreover, hiPSC-MSC-Exos not only promoted the generation of newly formed vessels, but also accelerated their maturation in wound sites. We found that hiPSC-MSC-Exos stimulated the proliferation and migration of human dermal fibroblasts and HUVECs in a dose-dependent manner in vitro. Similarly, Type I, III collagen and elastin secretion and mRNA expression by fibroblasts and tube formation by HUVECs were also increased with increasing hiPSC-MSC-Exos concentrations. Conclusions Our findings suggest that hiPSC-MSC-Exos can facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. These data provide the first evidence for the potential of hiPSC-MSC-Exos in treating cutaneous wounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases

            Background Bio-products from stem/progenitor cells, such as extracellular vesicles, are likely a new promising approach for reprogramming resident cells in both acute and chronic kidney disease. Forty CKD patients stage III and IV (eGFR 15–60 mg/ml) have been divided into two groups; twenty patients as treatment group “A” and twenty patients as a matching placebo group “B”. Two doses of MSC-derived extracellular vesicles had been administered to patients of group “A”. Blood urea, serum creatinine, urinary albumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) have been used to assess kidney functions and TNF-α, TGF-β1 and IL-10 have been used to assess the amelioration of the inflammatory immune activity. Results Participants in group A exhibited significant improvement of eGFR, serum creatinine level, blood urea and UACR. Patients of the treatment group “A” also exhibited significant increase in plasma levels of TGF-β1, and IL-10 and significant decrease in plasma levels of TNF-α. Participants of the control group B did not show significant improvement in any of the previously mentioned parameters at any time point of the study period. Conclusion Administration of cell-free cord-blood mesenchymal stem cells derived extracellular vesicles (CF-CB-MSCs-EVs) is safe and can ameliorate the inflammatory immune reaction and improve the overall kidney function in grade III-IV CKD patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons

              Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.
                Bookmark

                Author and article information

                Contributors
                zhanghanke321@163.com
                jiayu_huang7@sina.com
                645617898@qq.com
                liyanhui251@163.com
                gaoyingpro@163.com
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                16 July 2020
                16 July 2020
                2020
                : 11
                : 286
                Affiliations
                GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, , Huazhong University of Science and Technology, ; Wuhan, 430022 China
                Article
                1808
                10.1186/s13287-020-01808-2
                7364490
                32678010
                2b681786-7f9b-4524-9e14-7c229e7153d7
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 12 February 2020
                : 26 June 2020
                : 2 July 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100010909, Young Scientists Fund;
                Award ID: 81701423
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                stress urinary incontinence,bone marrow mesenchymal stem cells,small extracellular vesicles,mirna,tgf-β1,extracellular matrix

                Comments

                Comment on this article