31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD 50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Virus-like particles: Passport to immune recognition

          Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. In many cases such VLPs have structural characteristics and antigenicity similar to the parental virus, and some have already proven successful as vaccines against the cognate virus infection. The structural components of some VLPs have also proven amenable to the insertion or fusion of foreign antigenic sequences, allowing the production of chimeric VLPs exposing the foreign antigen on their surface. Other VLPs have been used as carriers for foreign antigens, including non-protein antigens, via chemical conjugation. This review outlines some of the advantages, disadvantages, and technical considerations for the use of a wide range of VLP systems in vaccine development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins.

            SUMO (small ubiquitin-related modifier) modulates protein structure and function by covalently binding to the lysine side chains of the target proteins. Yeast cells contain two SUMO proteases, Ulp1 and Ulp2, that cleave sumoylated proteins in the cell. Ulp1 (SUMO protease 1) processes the SUMO precursor to its mature form and also de-conjugates SUMO from side chain lysines of target proteins. Here we demonstrate that attachment of SUMO to the N-terminus of under-expressed proteins dramatically enhances their expression in E. coli. SUMO protease 1 was able to cleave a variety of SUMO fusions robustly and with impeccable specificity. Purified recombinant SUMO-GFPs were efficiently cleaved when any amino acid, except proline, was in the+1 position of the cleavage site. The enzyme was active over a broad range of buffer and temperature conditions. Purification of certain recombinant proteins is accomplished by production of Ub-fusions from which Ub can be subsequently removed by de-ubiquitinating enzymes (DUBs). However, DUBs are unstable enzymes that are difficult to produce and inexpensive DUBs are not available commercially. Our findings demonstrate that SUMO protease 1/SUMO-fusion system may be preferable to DUB/Ub-fusion. Enhanced expression and solubility of proteins fused to SUMO combined with broad specificity and highly efficient cleavage properties of the SUMO protease 1 indicates that SUMO-fusion technology will become a useful tool in purification of proteins and peptides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The coming of age of virus-like particle vaccines.

              Virus-like particles are supra-molecular assemblages, usually icosahedral or rod-like structures. They incorporate key immunologic features of viruses which include repetitive surfaces, particulate structures and induction of innate immunity through activation of pathogen-associated molecular-pattern recognition receptors. They carry no replicative genetic information and can be produced recombinantly in large scale. Virus-like particles thus represent a safe and effective vaccine platform for inducing potent B- and T-cell responses. In addition to being effective vaccines against the corresponding virus from which they are derived, virus-like particles can also be used to present foreign epitopes to the immune system. This can be achieved by genetic fusion or chemical conjugation. This technological innovation has greatly broadened the scope of their use, from immunizing against microbial pathogens to immunotherapy for chronic diseases. Towards this end, virus-like particles have been used to induce autoantibodies to disease-associated self-molecules involved in chronic diseases, such as hypertension and Alzheimer's disease. The recognition of the potent immunogenicity and commercial potential for virus-like particles has greatly accelerated research and development activities. During the last decade, two prophylactic virus-like particle vaccines have been registered for human use, while another 12 vaccines entered clinical development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2013
                4 July 2013
                : 44
                : 1
                : 48
                Affiliations
                [1 ]State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China
                [2 ]School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang 637551, Singapore
                Article
                1297-9716-44-48
                10.1186/1297-9716-44-48
                3720265
                23826638
                296fbdf8-f4aa-4f06-afa7-675b5b1c4e20
                Copyright ©2013 Guo et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 October 2012
                : 31 May 2013
                Categories
                Research

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article