11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Superior electric storage on an amorphous perfluorinated polymer surface

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.

          Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons

            Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
              Bookmark

              Author and article information

              Journal
              Sci Rep
              Sci Rep
              Scientific Reports
              Nature Publishing Group
              2045-2322
              23 February 2016
              2016
              : 6
              : 22012
              Affiliations
              [1 ]New Industry Creation Hatchery Centre, Tohoku University , Sendai, 980-8579, Japan
              [2 ]Waseda University Research Organization for Nano & Life Innovation, Green Device Laboratory , Tokyo, Japan
              [3 ]JEOL Ltd, Akishima , Tokyo 196-8558, Japan
              Author notes
              Article
              srep22012
              10.1038/srep22012
              4763234
              26902953
              26eda3ae-25b4-404b-9f0a-2beff38c2939
              Copyright © 2016, Macmillan Publishers Limited

              This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

              History
              : 22 October 2015
              : 05 February 2016
              Categories
              Article

              Uncategorized
              Uncategorized

              Comments

              Comment on this article