10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deforestation and land use change are among the most pressing anthropogenic environmental impacts. In Brazil, a resurgence of malaria in recent decades paralleled rapid deforestation and settlement in the Amazon basin, yet evidence of a deforestation-driven increase in malaria remains equivocal. We hypothesize an underlying cause of this ambiguity is that deforestation and malaria influence each other in bidirectional causal relationships—deforestation increases malaria through ecological mechanisms and malaria reduces deforestation through socioeconomic mechanisms—and that the strength of these relationships depends on the stage of land use transformation. We test these hypotheses with a large geospatial dataset encompassing 795 municipalities across 13 y (2003 to 2015) and show deforestation has a strong positive effect on malaria incidence. Our results suggest a 10% increase in deforestation leads to a 3.3% increase in malaria incidence (∼9,980 additional cases associated with 1,567 additional km 2 lost in 2008, the study midpoint, Amazon-wide). The effect is larger in the interior and absent in outer Amazonian states where little forest remains. However, this strong effect is only detectable after controlling for a feedback of malaria burden on forest loss, whereby increased malaria burden significantly reduces forest clearing, possibly mediated by human behavior or economic development. We estimate a 1% increase in malaria incidence results in a 1.4% decrease in forest area cleared (∼219 fewer km 2 cleared associated with 3,024 additional cases in 2008). This bidirectional socioecological feedback between deforestation and malaria, which attenuates as land use intensifies, illustrates the intimate ties between environmental change and human health.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Determinants of relapse periodicity in Plasmodium vivax malaria

          Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Deforestation in Brazilian Amazonia: History, Rates, and Consequences

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optimal temperature for malaria transmission is dramatically lower than previously predicted.

              The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission. © 2012 Blackwell Publishing Ltd/CNRS.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 14 2019
                : 201905315
                Article
                10.1073/pnas.1905315116
                6825316
                31611369
                24a89c8a-93c5-47d3-9ef0-2373a29fb0dc
                © 2019

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article