11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential drivers of benthic foraminiferal and molluscan community composition from a multivariate record of early Miocene environmental change

      ,
      Paleobiology
      Paleontological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate changes are multivariate in nature, and disentangling the proximal drivers of biotic responses to paleoclimate events requires time series of multiple environmental proxies. We reconstruct a multivariate time series of local environmental change for the early Miocene Newport Member of the Astoria Formation (20.26–18 Ma), using proxies for temperature (δ 18O), productivity (δ 13C), organic carbon flux (Δδ 13C), oxygenation (δ 15N), and sedimentary grain size (% mud). Our data suggest increases in productivity and declines in oxygenation on the Oregon shelf during this interval of global warming. We evaluate the association of individual environmental factors, and combinations of factors, with changes in faunal composition observed in benthic foraminiferal and molluscan communities collected from the exact same sediments as the environmental data. The δ 15N values are the most parsimonious correlates with major changes in foraminiferal composition, whereas molluscan composition is most closely related to δ 13C values, suggesting that different components of the environment are influencing each group. When the proxies that have the best supported relationships with the faunal gradients are removed from the analyses to simulate the absence of those proxy data, significant relationships between the faunal gradients and the remaining environmental proxies can still be found. This suggests that environmental drivers can be incorrectly attributed to faunal changes when key proxy data are missing. Paleoecological studies of biotic response that test multiple environmental drivers for multiple taxonomic groups are powerful tools for identifying the ecological consequences of past warming events and the regional drivers of ecological changes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Null Hypothesis Testing: Problems, Prevalence, and an Alternative

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”

                Bookmark

                Author and article information

                Journal
                applab
                Paleobiology
                Paleobiology
                Paleontological Society
                0094-8373
                1938-5331
                2014
                April 2016
                : 40
                : 03
                : 398-416
                Article
                10.1666/13019
                229ee938-6994-4d55-a7da-9e2dcc0a6e57
                © 2014
                History

                Comments

                Comment on this article